Zipkin 和 Thanos 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是大规模实时查询的推荐配置。为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Zipkin 和 InfluxDB。

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Zipkin 输入插件允许从微服务收集跟踪信息和定时数据。此功能对于诊断复杂面向服务环境中的延迟问题至关重要。

此插件使用 HTTP 上的 Prometheus 远程写入协议将指标从 Telegraf 发送到 Thanos,从而实现高效且可扩展地摄取到 Thanos Receive 组件中。

集成详情

Zipkin

此插件实现了 Zipkin HTTP 服务器,用于收集跟踪和定时数据,这对于解决微服务架构中的延迟问题至关重要。Zipkin 是一个分布式跟踪系统,可帮助收集跨各种微服务的定时数据,使团队能够可视化请求流并识别性能瓶颈。该插件支持基于指定的 Content-Type 以 JSON 或 thrift 格式输入跟踪。此外,它还利用 span 元数据来跟踪请求的定时,从而增强了符合 OpenTracing 标准的应用程序的可观察性。作为一项实验性功能,其配置和模式可能会随着时间的推移而演变,以更好地满足用户需求和分布式跟踪方法的进步。

Thanos

Telegraf 的 HTTP 插件可以通过其 Remote Write 兼容的 Receive 组件将指标直接发送到 Thanos。通过将数据格式设置为 prometheusremotewrite,Telegraf 可以将指标序列化为本地 Prometheus 客户端使用的相同基于 protobuf 的格式。此设置实现了高吞吐量、低延迟的指标摄取到 Thanos 中,从而促进了大规模的集中式可观察性。在混合环境中,当 Telegraf 从 Prometheus 本地范围之外的系统(例如 SNMP 设备、Windows 主机或自定义应用程序)收集指标,并将它们直接流式传输到 Thanos 以进行长期存储和全局查询时,此功能尤其有用。

配置

Zipkin

[[inputs.zipkin]]
  ## URL path for span data
  # path = "/api/v1/spans"

  ## Port on which Telegraf listens
  # port = 9411

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

Thanos

[[outputs.http]]
  ## Thanos Receive endpoint for remote write
  url = "http://thanos-receive.example.com/api/v1/receive"

  ## HTTP method
  method = "POST"

  ## Data format set to Prometheus remote write
  data_format = "prometheusremotewrite"

  ## Optional headers (authorization, etc.)
  # [outputs.http.headers]
  #   Authorization = "Bearer YOUR_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

输入和输出集成示例

Zipkin

  1. 微服务中的延迟监控:使用 Zipkin 输入插件来捕获和分析来自微服务架构的跟踪数据。通过可视化请求流并查明延迟源,开发团队可以优化服务交互、提高响应时间并确保跨服务更流畅的用户体验。

  2. 关键服务中的性能优化:在关键服务中集成插件,不仅可以监控响应时间,还可以跟踪可能突出显示性能问题的特定注释。收集 span 数据的能力可以帮助确定需要性能增强的区域的优先级,从而实现有针对性的改进。

  3. 动态服务依赖关系映射:使用收集的跟踪数据,自动映射服务依赖关系并在仪表板中可视化它们。这有助于团队了解不同服务如何交互以及故障或减速的影响,最终促成更好的架构决策和更快的问题解决。

  4. 服务延迟中的异常检测:将 Zipkin 数据与机器学习模型结合使用,以检测服务延迟和请求处理时间中的异常模式。通过自动识别异常,运营团队可以在新兴问题升级为严重故障之前做出积极响应。

Thanos

  1. 无代理云监控:在云虚拟机上部署 Telegraf 代理以收集系统和应用程序指标,然后使用 Remote Write 将它们直接流式传输到 Thanos。这提供了集中式可观察性,而无需在每个位置都部署 Prometheus 节点。

  2. 可扩展的 Windows 主机监控:在 Windows 机器上使用 Telegraf 收集操作系统级别的指标,并通过 Remote Write 将它们发送到 Thanos Receive。这使得在异构环境中实现可观察性成为可能,而本地 Prometheus 仅在 Linux 上提供支持。

  3. 跨区域指标联邦:多个地理区域中的 Telegraf 代理可以使用此插件将数据推送到区域本地的 Thanos Receivers。从那里,Thanos 可以全局去重和查询指标,从而降低延迟和网络出口成本。

  4. 将第三方数据集成到 Thanos 中:使用 Telegraf 输入从自定义遥测源(例如 REST API 或专有日志)收集指标,并通过 Remote Write 将它们转发到 Thanos。这会将非本地数据引入到与 Prometheus 兼容的长期分析管道中。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供与 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成