目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,这款排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法
输入和输出集成概述
Zipkin 输入插件允许从微服务收集跟踪信息和计时数据。此功能对于诊断复杂面向服务环境中的延迟问题至关重要。
此输出插件通过 HTTP 将指标从 Telegraf 直接流式传输到 ServiceNow MID Server,利用 nowmetric
序列化器与 ServiceNow 的 Operational Intelligence 和 Event Management 进行高效集成。
集成详情
Zipkin
此插件实现了 Zipkin HTTP 服务器,以收集跟踪和计时数据,这些数据对于排除微服务架构中的延迟问题至关重要。Zipkin 是一个分布式跟踪系统,可帮助收集跨各种微服务的计时数据,使团队能够可视化请求流并识别性能瓶颈。该插件支持基于指定 Content-Type 的 JSON 或 thrift 格式的输入跟踪。此外,它还利用 span 元数据来跟踪请求的计时,从而增强了符合 OpenTracing 标准的应用程序的可观察性。作为一项实验性功能,其配置和架构可能会随着时间的推移而演变,以更好地满足用户需求和分布式跟踪方法的进步。
ServiceNow
Telegraf 可用于将指标数据直接发送到 ServiceNow MID Server REST 端点。指标使用 ServiceNow 的 Operational Intelligence (OI) 格式或 JSONv2 格式进行格式化,从而与 ServiceNow 的 Event Management 和 Operational Intelligence 平台实现无缝集成。序列化器有效地批量处理指标,通过最大限度地减少 HTTP POST 请求的数量来降低网络开销。此集成允许用户快速利用 ServiceNow 中的指标来增强可观察性、主动事件管理和性能监控,并利用 ServiceNow 的 Operational Intelligence 功能。
配置
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
ServiceNow
[[outputs.http]]
## ServiceNow MID Server metrics endpoint
url = "http://mid-server.example.com:9082/api/mid/sa/metrics"
## HTTP request method
method = "POST"
## Basic Authentication credentials
username = "evt.integration"
password = "P@$$w0rd!"
## Data serialization format for ServiceNow
data_format = "nowmetric"
## Metric format type: "oi" (default) or "jsonv2"
nowmetric_format = "oi"
## HTTP Headers
[outputs.http.headers]
Content-Type = "application/json"
Accept = "application/json"
## Optional timeout
# timeout = "5s"
## TLS configuration options
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
输入和输出集成示例
Zipkin
-
微服务中的延迟监控:使用 Zipkin 输入插件来捕获和分析来自微服务架构的跟踪数据。通过可视化请求流并查明延迟源,开发团队可以优化服务交互,缩短响应时间,并确保跨服务的用户体验更加顺畅。
-
关键服务中的性能优化:在关键服务中集成该插件,不仅可以监控响应时间,还可以跟踪可能突出显示性能问题的特定注释。收集 span 数据的能力可以帮助确定需要性能增强的区域的优先级,从而实现有针对性的改进。
-
动态服务依赖关系映射:通过收集的跟踪数据,自动映射服务依赖关系并在仪表板中可视化它们。这有助于团队了解不同服务如何交互以及故障或速度减慢的影响,最终促成更好的架构决策和更快的问题解决。
-
服务延迟中的异常检测:将 Zipkin 数据与机器学习模型相结合,以检测服务延迟和请求处理时间中的异常模式。通过自动识别异常,运营团队可以在新兴问题升级为严重故障之前主动响应。
ServiceNow
-
主动事件管理:利用 Telegraf 和 ServiceNow 集成,将基础设施和应用程序指标实时流式传输到 ServiceNow Event Management。根据阈值自动触发事件或补救工作流程,从而显着缩短事件检测和响应时间。
-
端到端应用程序监控:在应用程序堆栈的多个层部署 Telegraf 代理,将性能指标直接发送到 ServiceNow。利用 ServiceNow 的 Operational Intelligence,团队可以将跨组件的指标关联起来,从而快速识别性能瓶颈。
-
动态 CI 性能跟踪:通过使用此插件推送性能数据,将 Telegraf 指标与 ServiceNow 的 CMDB 集成,从而允许根据实时指标自动更新配置项 (CI) 的运行状况状态。这确保了 ServiceNow 中基础设施运行状况的准确和最新状态。
-
云资源优化:使用 Telegraf 从混合云和多云基础设施收集指标,直接流式传输到 ServiceNow。利用这些指标进行实时分析、预测容量规划和资源优化,从而实现主动管理并降低运营成本。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,这款排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法