Zipkin 和 Prometheus 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Zipkin 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。借助 InfluxDB,这个排名第一的时序平台旨在与 Telegraf 一起扩展。

了解入门方法

输入和输出集成概述

Zipkin 输入插件允许从微服务收集跟踪信息和定时数据。此功能对于诊断复杂面向服务的环境中的延迟问题至关重要。

Prometheus 输出插件使 Telegraf 能够在 HTTP 端点公开指标,以供 Prometheus 服务器抓取。此集成允许用户以 Prometheus 可以高效处理的格式从各种来源收集和聚合指标。

集成详情

Zipkin

此插件实现了 Zipkin HTTP 服务器,以收集跟踪和定时数据,这对于排除微服务架构中的延迟问题至关重要。Zipkin 是一个分布式跟踪系统,可帮助收集跨各种微服务的定时数据,从而使团队能够可视化请求流并识别性能瓶颈。该插件基于指定的 Content-Type 提供对 JSON 或 thrift 格式的输入跟踪的支持。此外,它还利用 span 元数据来跟踪请求的定时,从而增强对符合 OpenTracing 标准的应用程序的可观察性。作为一项实验性功能,其配置和架构可能会随着时间的推移而演变,以更好地满足用户需求和分布式跟踪方法方面的进步。

Prometheus

此插件促进了与 Prometheus 的集成,Prometheus 是一个著名的开源监控和警报工具包,专为大规模环境中的可靠性和效率而设计。通过充当 Prometheus 客户端,它允许用户通过 HTTP 服务器公开一组定义的指标,Prometheus 可以按指定的时间间隔抓取这些指标。此插件通过允许各种系统以标准化格式发布性能指标,从而在监控各种系统中发挥着关键作用,从而可以广泛了解系统健康状况和行为。主要功能包括支持配置各种端点、启用 TLS 以进行安全通信以及 HTTP 基本身份验证的选项。该插件还与全局 Telegraf 配置设置无缝集成,支持广泛的自定义以适应特定的监控需求。这促进了不同系统必须有效通信性能数据的环境中的互操作性。利用 Prometheus 的指标格式,它允许通过高级配置(例如指标过期和收集器控制)进行灵活的指标管理,从而为监控和警报工作流程提供完善的解决方案。

配置

Zipkin

[[inputs.zipkin]]
  ## URL path for span data
  # path = "/api/v1/spans"

  ## Port on which Telegraf listens
  # port = 9411

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

Prometheus

[[outputs.prometheus_client]]
  ## Address to listen on.
  ##   ex:
  ##     listen = ":9273"
  ##     listen = "vsock://:9273"
  listen = ":9273"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  ## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
  ## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
  ## Valid options: 1, 2
  # metric_version = 1

  ## Use HTTP Basic Authentication.
  # basic_username = "Foo"
  # basic_password = "Bar"

  ## If set, the IP Ranges which are allowed to access metrics.
  ##   ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
  # ip_range = []

  ## Path to publish the metrics on.
  # path = "/metrics"

  ## Expiration interval for each metric. 0 == no expiration
  # expiration_interval = "60s"

  ## Collectors to enable, valid entries are "gocollector" and "process".
  ## If unset, both are enabled.
  # collectors_exclude = ["gocollector", "process"]

  ## Send string metrics as Prometheus labels.
  ## Unless set to false all string metrics will be sent as labels.
  # string_as_label = true

  ## If set, enable TLS with the given certificate.
  # tls_cert = "/etc/ssl/telegraf.crt"
  # tls_key = "/etc/ssl/telegraf.key"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Export metric collection time.
  # export_timestamp = false

  ## Specify the metric type explicitly.
  ## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
  # [outputs.prometheus_client.metric_types]
  #   counter = []
  #   gauge = []

输入和输出集成示例

Zipkin

  1. 微服务中的延迟监控:使用 Zipkin 输入插件捕获和分析来自微服务架构的跟踪数据。通过可视化请求流并查明延迟来源,开发团队可以优化服务交互,缩短响应时间,并确保跨服务更流畅的用户体验。

  2. 关键服务中的性能优化:将该插件集成到关键服务中,不仅可以监控响应时间,还可以跟踪可能突出显示性能问题的特定注释。收集 span 数据的功能可以帮助确定需要性能增强的区域的优先级,从而实现有针对性的改进。

  3. 动态服务依赖关系映射:利用收集的跟踪数据,自动映射服务依赖关系并在仪表板中可视化它们。这有助于团队了解不同服务如何交互以及故障或速度减慢的影响,最终促成更好的架构决策和更快的问题解决。

  4. 服务延迟中的异常检测:将 Zipkin 数据与机器学习模型相结合,以检测服务延迟和请求处理时间中的异常模式。通过自动识别异常,运营团队可以在新出现的问题升级为严重故障之前主动做出响应。

Prometheus

  1. 多云部署监控:利用 Prometheus 插件从跨多个云提供商运行的应用程序收集指标。这种情况允许团队通过单个 Prometheus 实例集中监控,该实例从不同环境抓取指标,从而提供跨混合基础设施的统一性能指标视图。它简化了报告和警报,提高了运营效率,而无需复杂的集成。

  2. 增强微服务可见性:实施该插件以公开来自 Kubernetes 集群中各种微服务的指标。借助 Prometheus,团队可以实时可视化服务指标、识别瓶颈并维护系统运行状况检查。此设置支持基于从收集的指标生成的见解进行自适应扩展和资源利用率优化。它增强了对服务交互进行故障排除的能力,从而显着提高了微服务架构的弹性。

  3. 电子商务中的实时异常检测:通过将此插件与 Prometheus 一起使用,电子商务平台可以监控关键绩效指标,例如响应时间和错误率。将异常检测算法与抓取的指标集成在一起,可以识别指示潜在问题的意外模式,例如突然的流量峰值或后端服务故障。这种主动监控增强了业务连续性和运营效率,最大限度地减少了潜在的停机时间,同时确保了服务的可靠性。

  4. API 的性能指标报告:利用 Prometheus 输出插件收集和报告 API 性能指标,然后可以在 Grafana 仪表板中可视化这些指标。此用例可以详细分析 API 响应时间、吞吐量和错误率,从而促进 API 服务的持续改进。通过密切监控这些指标,团队可以快速响应性能下降,确保最佳的 API 性能并保持高水平的服务可用性。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。借助 InfluxDB,这个排名第一的时序平台旨在与 Telegraf 一起扩展。

了解入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成