目录
输入和输出集成概述
Zipkin 输入插件允许从微服务收集跟踪信息和计时数据。此功能对于诊断复杂面向服务环境中的延迟问题至关重要。
此插件使用 HTTP 将 Telegraf 指标直接发送到 Grafana 的 Mimir 数据库,为 Prometheus 兼容指标提供可扩展且高效的长期存储和分析。
集成详情
Zipkin
此插件实现了 Zipkin HTTP 服务器,用于收集跟踪和计时数据,这对于排除微服务架构中的延迟问题至关重要。Zipkin 是一个分布式跟踪系统,可帮助收集跨各种微服务的计时数据,使团队能够可视化请求流并识别性能瓶颈。该插件支持基于指定的 Content-Type 的 JSON 或 thrift 格式的输入跟踪。此外,它还利用 span 元数据来跟踪请求的计时,从而增强对遵循 OpenTracing 标准的应用程序的可观察性。作为一项实验性功能,其配置和架构可能会随着时间的推移而发展,以更好地满足用户需求和分布式跟踪方法的进步。
Mimir
Grafana Mimir 支持 Prometheus Remote Write 协议,使 Telegraf 收集的指标能够有效地摄取到 Mimir 集群中,以实现大规模、长期存储。此集成利用 Prometheus 成熟的标准,允许用户将 Telegraf 广泛的数据收集功能与 Mimir 的高级功能(如查询联合、多租户、高可用性和经济高效的存储)相结合。Grafana Mimir 的架构经过优化,可处理大量指标数据并提供快速查询响应,使其成为复杂监控环境和分布式系统的理想选择。
配置
Zipkin
[[inputs.zipkin]]
## URL path for span data
# path = "/api/v1/spans"
## Port on which Telegraf listens
# port = 9411
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
Mimir
[[outputs.http]]
url = "http://data-load-balancer-backend-1:9009/api/v1/push"
data_format = "prometheusremotewrite"
username = "*****"
password = "******"
[outputs.http.headers]
Content-Type = "application/x-protobuf"
Content-Encoding = "snappy"
X-Scope-OrgID = "****"
输入和输出集成示例
Zipkin
-
微服务中的延迟监控:使用 Zipkin 输入插件捕获和分析来自微服务架构的跟踪数据。通过可视化请求流并查明延迟来源,开发团队可以优化服务交互,缩短响应时间,并确保跨服务更流畅的用户体验。
-
关键服务中的性能优化:在关键服务中集成该插件,不仅可以监控响应时间,还可以跟踪可能突出显示性能问题的特定注释。收集 span 数据的能力可以帮助确定需要性能增强的区域的优先级,从而实现有针对性的改进。
-
动态服务依赖关系映射:使用收集的跟踪数据,自动映射服务依赖关系并在仪表板中对其进行可视化。这有助于团队了解不同服务之间的交互以及故障或速度减慢的影响,最终导致更好的架构决策和更快的问题解决。
-
服务延迟中的异常检测:将 Zipkin 数据与机器学习模型相结合,以检测服务延迟和请求处理时间中的异常模式。通过自动识别异常,运营团队可以在新兴问题升级为严重故障之前主动响应。
Mimir
-
企业级 Kubernetes 监控:将 Telegraf 与 Grafana Mimir 集成,以从企业级 Kubernetes 集群流式传输指标。这利用 Mimir 的水平可扩展性和高可用性,实现了全面的可见性、改进的资源分配以及跨数百个集群的主动故障排除。
-
多租户 SaaS 应用程序可观察性:使用此插件将来自不同 SaaS 租户的指标集中到 Grafana Mimir 中,从而实现租户隔离和基于资源使用情况的准确计费。这种方法提供了可靠的可观察性、高效的成本管理和安全的多租户支持。
-
全球边缘网络性能跟踪:将来自全球分布式边缘服务器的延迟和可用性指标流式传输到 Grafana Mimir 中。组织可以快速识别性能下降或中断,利用 Mimir 的快速查询功能来确保最佳的服务可靠性和用户体验。
-
高容量微服务的实时分析:在高容量微服务架构中实施 Telegraf 指标收集,将数据馈送到 Grafana Mimir 以进行实时分析和异常检测。Mimir 强大的查询功能使团队能够检测异常并快速响应,从而保持高服务可用性和性能。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。