Zipkin 和 Microsoft SQL Server 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Zipkin 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Zipkin 输入插件允许从微服务收集跟踪信息和计时数据。此功能对于诊断复杂面向服务环境中的延迟问题至关重要。

Telegraf 的 SQL 插件有助于将指标存储在 SQL 数据库中。当配置为 Microsoft SQL Server 时,它支持特定的 DSN 格式和模式要求,从而实现与 SQL Server 的无缝集成。

集成详情

Zipkin

此插件实现了 Zipkin HTTP 服务器,以收集跟踪和计时数据,这对于解决微服务架构中的延迟问题至关重要。Zipkin 是一个分布式跟踪系统,可帮助收集跨各种微服务的计时数据,使团队能够可视化请求流并识别性能瓶颈。该插件支持基于指定的 Content-Type 的 JSON 或 thrift 格式的输入跟踪。此外,它还利用 span 元数据来跟踪请求的计时,从而增强了符合 OpenTracing 标准的应用程序的可观察性。作为一项实验性功能,其配置和模式可能会随着时间的推移而发展,以更好地满足用户需求和分布式跟踪方法的进步。

Microsoft SQL Server

Telegraf 的 Microsoft SQL Server SQL 输出插件旨在通过动态创建与传入数据结构匹配的表和列来捕获和存储指标数据。此集成利用 go-mssqldb 驱动程序,该驱动程序通过包含服务器、端口和数据库详细信息的 DSN 遵循 SQL Server 连接协议。尽管该驱动程序由于单元测试有限而被认为是实验性的,但它为动态模式生成和数据插入提供了强大的支持,从而实现了系统性能的详细时间戳记录。尽管其状态为实验性,但这种灵活性使其成为需要可靠和精细指标日志记录的环境的宝贵工具。

配置

Zipkin

[[inputs.zipkin]]
  ## URL path for span data
  # path = "/api/v1/spans"

  ## Port on which Telegraf listens
  # port = 9411

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

Microsoft SQL Server

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "mssql"

  ## Data source name
  ## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
  ## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
  data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## You can customize the mapping if needed.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Zipkin

  1. 微服务中的延迟监控:使用 Zipkin 输入插件捕获和分析来自微服务架构的跟踪数据。通过可视化请求流并查明延迟来源,开发团队可以优化服务交互,缩短响应时间,并确保跨服务的更流畅的用户体验。

  2. 关键服务中的性能优化:在关键服务中集成插件,不仅可以监控响应时间,还可以跟踪可能突出显示性能问题的特定注释。收集 span 数据的能力可以帮助确定需要性能增强的区域的优先级,从而实现有针对性的改进。

  3. 动态服务依赖关系映射:使用收集的跟踪数据,自动映射服务依赖关系并在仪表板中可视化它们。这有助于团队了解不同服务如何交互以及故障或减速的影响,最终促成更好的架构决策和更快的问题解决。

  4. 服务延迟中的异常检测:将 Zipkin 数据与机器学习模型相结合,以检测服务延迟和请求处理时间中的异常模式。通过自动识别异常,运营团队可以在新兴问题升级为严重故障之前主动响应。

Microsoft SQL Server

  1. 企业应用程序监控:利用插件捕获在 SQL Server 上运行的企业应用程序的详细性能指标。此设置允许 IT 团队分析系统性能、跟踪事务时间并识别跨复杂多层环境的瓶颈。

  2. 动态基础设施审计:部署插件以创建 SQL Server 中基础设施更改和性能指标的动态审计日志。此用例非常适合需要实时监控和系统性能历史分析以进行合规性和优化的组织。

  3. 自动化性能基准测试:使用插件持续记录和分析 SQL Server 数据库的性能指标。这实现了自动化基准测试,其中将历史数据与当前性能进行比较,从而帮助快速识别服务中的异常或降级。

  4. 集成 DevOps 仪表板:将插件与 DevOps 监控工具集成,以将来自 SQL Server 的实时指标馈送到集中式仪表板。这提供了应用程序运行状况的整体视图,使团队能够将 SQL Server 性能与应用程序级事件相关联,从而实现更快的故障排除和主动维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供 DynamoDB 的检查点功能。

查看集成