Webhooks 和 SQLite 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Webhooks 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Webhooks 插件允许 Telegraf 通过 Webhooks 接收和处理来自各种外部服务的 HTTP 请求。此插件使用户能够收集实时指标和事件,并将它们集成到他们的监控解决方案中。

Telegraf 的 SQL 输出插件通过为每种指标类型动态创建表,将指标存储在 SQL 数据库中。当配置为 SQLite 时,它使用基于文件的 DSN 和为轻量级嵌入式数据库使用量身定制的最小 SQL 模式。

集成详情

Webhooks

此 Telegraf 插件旨在通过启动注册多个 Webhook 端点的 HTTP 服务器来充当 Webhook 监听器。它提供了一种通过捕获发送到定义路径的 HTTP 请求来收集来自各种服务的事件的方式。每个服务都可以配置其特定的身份验证详细信息和请求处理选项。该插件的突出之处在于允许与任何 Telegraf 输出插件集成,使其在事件驱动的架构中具有通用性。通过实现高效的事件接收,它为实时监控和响应系统开辟了可能性,这对于需要即时事件处理和处理的现代应用程序至关重要。

SQLite

SQL 输出插件使用动态模式将 Telegraf 指标写入 SQL 数据库,其中每种指标类型对应一个表。对于 SQLite,该插件使用 modernc.org/sqlite 驱动程序,并且需要文件 URI 格式的 DSN(例如,'file:/path/to/telegraf.db?cache=shared')。此配置利用标准 ANSI SQL 进行表创建和数据插入,确保与 SQLite 的功能兼容。

配置

Webhooks

[[inputs.webhooks]]
  ## Address and port to host Webhook listener on
  service_address = ":1619"

  ## Maximum duration before timing out read of the request
  # read_timeout = "10s"
  ## Maximum duration before timing out write of the response
  # write_timeout = "10s"

  [inputs.webhooks.filestack]
    path = "/filestack"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.github]
    path = "/github"
    # secret = ""

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.mandrill]
    path = "/mandrill"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.rollbar]
    path = "/rollbar"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.papertrail]
    path = "/papertrail"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.particle]
    path = "/particle"

    ## HTTP basic auth
    #username = ""
    #password = ""

  [inputs.webhooks.artifactory]
    path = "/artifactory"

SQLite

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "sqlite"

  ## Data source name
  ## For SQLite, the DSN is a filename or URL with the scheme "file:".
  ## Example: "file:/path/to/telegraf.db?cache=shared"
  data_source_name = "file:/path/to/telegraf.db?cache=shared"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Webhooks

  1. 来自 Github 的实时通知:将 Webhooks 输入插件与 Github 集成,以接收有关事件(例如拉取请求、提交和问题)的实时通知。这使开发团队能够立即监控其存储库中的关键更改和更新,从而改善协作和响应时间。

  2. 使用 Rollbar 进行自动化警报:使用此插件监听从 Rollbar 报告的错误,使团队能够对生产中的错误和问题做出快速反应。通过将这些警报转发到集中式监控系统,团队可以根据严重性确定响应的优先级,并防止停机时间升级。

  3. 来自 Filestack 的性能监控:捕获来自 Filestack 的事件以跟踪文件上传、转换和错误。此设置帮助企业了解用户与文件管理流程的交互,优化工作流程,并确保文件服务的高可用性。

  4. 使用 Papertrail 进行集中式日志记录:通过 Webhooks 关联发送到 Papertrail 的所有日志,使您可以整合日志记录策略。通过实时日志转发,团队可以有效地分析趋势和异常情况,确保他们保持对关键操作的可见性。

SQLite

  1. 本地监控存储:配置插件以将指标写入本地 SQLite 数据库文件。这非常适合不需要设置全规模数据库服务器的轻量级部署。
  2. 嵌入式应用程序:将 SQLite 用作嵌入在边缘设备中的应用程序的后端,受益于其基于文件的架构和最低的资源需求。
  3. 快速设置以进行测试:利用 SQLite 的易用性,快速为 Telegraf 指标收集设置测试环境,而无需外部数据库服务。
  4. 自定义架构管理:如果您需要特定的列类型或索引,请调整表创建模板以预定义您的架构,从而确保与您的应用程序需求兼容。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供与 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成