目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 使用 InfluxDB,这是 #1 的时序平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
Webhooks 插件允许 Telegraf 通过 Webhooks 接收和处理来自各种外部服务的 HTTP 请求。 此插件使用户能够收集实时指标和事件,并将它们集成到其监控解决方案中。
Telegraf 的 SQL 插件允许在 SQL 数据库中无缝存储指标。 当配置为 Snowflake 时,它采用专门的 DSN 格式和动态表创建,以将指标映射到相应的模式。
集成详细信息
Webhooks
此 Telegraf 插件旨在充当 Webhook 侦听器,通过启动 HTTP 服务器来注册多个 Webhook 端点。 它提供了一种通过捕获发送到已定义路径的 HTTP 请求来收集来自各种服务的事件的方法。 可以为每个服务配置其特定的身份验证详细信息和请求处理选项。 该插件的突出之处在于允许与任何 Telegraf 输出插件集成,使其在事件驱动型架构中具有通用性。 通过有效地接收事件,它为实时监控和响应系统开辟了可能性,这对于需要即时事件处理和处理的现代应用程序至关重要。
Snowflake
Telegraf 的 SQL 插件旨在通过基于传入数据创建表和列来动态地将指标写入 SQL 数据库。 当配置为 Snowflake 时,它采用 gosnowflake 驱动程序,该驱动程序使用 DSN,DSN 以紧凑的格式封装凭据、帐户详细信息和数据库配置。 此设置允许自动生成表,其中每个指标都记录有精确的时间戳,从而确保详细的历史跟踪。 尽管该集成被认为是实验性的,但它利用了 Snowflake 强大的数据仓库功能,使其适用于可扩展的、基于云的分析和报告解决方案。
配置
Webhooks
[[inputs.webhooks]]
## Address and port to host Webhook listener on
service_address = ":1619"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
[inputs.webhooks.filestack]
path = "/filestack"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.github]
path = "/github"
# secret = ""
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.mandrill]
path = "/mandrill"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.rollbar]
path = "/rollbar"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.papertrail]
path = "/papertrail"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.particle]
path = "/particle"
## HTTP basic auth
#username = ""
#password = ""
[inputs.webhooks.artifactory]
path = "/artifactory"
Snowflake
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "snowflake"
## Data source name
## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
## Example DSN: "username:password@account/warehouse/db/schema"
data_source_name = "username:password@account/warehouse/db/schema"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
输入和输出集成示例
Webhooks
-
来自 Github 的实时通知:将 Webhooks 输入插件与 Github 集成,以接收诸如拉取请求、提交和问题等事件的实时通知。 这使开发团队可以立即监控其存储库中的关键更改和更新,从而改善协作和响应时间。
-
使用 Rollbar 进行自动化警报:使用此插件来侦听从 Rollbar 报告的错误,使团队能够对生产中的错误和问题做出快速反应。 通过将这些警报转发到集中的监控系统,团队可以根据严重程度确定响应的优先级,并防止停机时间升级。
-
来自 Filestack 的性能监控:捕获来自 Filestack 的事件以跟踪文件上传、转换和错误。 此设置帮助企业了解用户与文件管理流程的交互,优化工作流程,并确保文件服务的高可用性。
-
使用 Papertrail 进行集中式日志记录:通过 Webhooks 关联发送到 Papertrail 的所有日志,使您可以整合日志记录策略。 通过实时日志转发,团队可以有效地分析趋势和异常,确保他们保持对关键操作的可见性。
Snowflake
-
基于云的数据湖集成:利用该插件将来自各种来源的实时指标流式传输到 Snowflake 中,从而创建集中式数据湖。 此集成支持云数据上的复杂分析和机器学习工作流程。
-
动态商业智能仪表板:利用该插件从传入的指标中自动生成表,并将它们馈送到 BI 工具中。 这使企业可以创建动态仪表板,以可视化性能趋势和运营见解,而无需手动模式管理。
-
可扩展的物联网分析:部署该插件以捕获来自物联网设备的高频数据到 Snowflake 中。 此用例促进了传感器数据的聚合和分析,从而实现大规模的预测性维护和实时监控。
-
用于合规性的历史趋势分析:使用该插件在 Snowflake 中记录和存档详细的指标数据,然后可以查询这些数据以进行长期趋势分析和合规性报告。 此设置确保组织可以维护强大的审计跟踪,并在需要时执行取证分析。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 使用 InfluxDB,这是 #1 的时序平台,旨在与 Telegraf 一起扩展。
查看入门方法