VMware vSphere 和 Snowflake 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑VMware vSphere 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

VMware vSphere Telegraf 插件提供了一种从 VMware vCenter 服务器收集指标的方法,从而可以全面监控和管理 vSphere 环境中的虚拟资源。

Telegraf 的 SQL 插件允许在 SQL 数据库中无缝存储指标。 当配置为 Snowflake 时,它采用专门的 DSN 格式和动态表创建,以将指标映射到适当的架构。

集成详情

VMware vSphere

此插件连接到 VMware vSphere 服务器以收集来自虚拟环境的各种指标,从而实现虚拟资源的高效监控和管理。 它与 vSphere API 接口,以收集有关集群、主机、资源池、虚拟机、数据存储和 vSAN 实体的数据,并以适合分析和可视化的格式呈现。 该插件对于管理基于 VMware 的基础设施的管理员尤其有价值,因为它有助于实时跟踪系统性能、资源使用情况和操作问题。 通过聚合来自多个来源的数据,该插件使用户能够获得洞察力,从而促进有关资源分配、故障排除和确保最佳系统性能的明智决策。 此外,对密钥存储集成的支持允许安全处理敏感凭据,从而促进安全和合规性评估方面的最佳实践。

Snowflake

Telegraf 的 SQL 插件旨在通过根据传入数据创建表和列,将指标动态写入 SQL 数据库。 当配置为 Snowflake 时,它采用 gosnowflake 驱动程序,该驱动程序使用 DSN,DSN 以紧凑的格式封装凭据、帐户详细信息和数据库配置。 这种设置允许自动生成表,在表中记录每个指标以及精确的时间戳,从而确保详细的历史跟踪。 尽管该集成被认为是实验性的,但它利用了 Snowflake 强大的数据仓库功能,使其适用于可扩展的、基于云的分析和报告解决方案。

配置

VMware vSphere

[[inputs.vsphere]]
  vcenters = [ "https://vcenter.local/sdk" ]
  username = "[email protected]"
  password = "secret"

  vm_metric_include = [
    "cpu.demand.average",
    "cpu.idle.summation",
    "cpu.latency.average",
    "cpu.readiness.average",
    "cpu.ready.summation",
    "cpu.run.summation",
    "cpu.usagemhz.average",
    "cpu.used.summation",
    "cpu.wait.summation",
    "mem.active.average",
    "mem.granted.average",
    "mem.latency.average",
    "mem.swapin.average",
    "mem.swapinRate.average",
    "mem.swapout.average",
    "mem.swapoutRate.average",
    "mem.usage.average",
    "mem.vmmemctl.average",
    "net.bytesRx.average",
    "net.bytesTx.average",
    "net.droppedRx.summation",
    "net.droppedTx.summation",
    "net.usage.average",
    "power.power.average",
    "virtualDisk.numberReadAveraged.average",
    "virtualDisk.numberWriteAveraged.average",
    "virtualDisk.read.average",
    "virtualDisk.readOIO.latest",
    "virtualDisk.throughput.usage.average",
    "virtualDisk.totalReadLatency.average",
    "virtualDisk.totalWriteLatency.average",
    "virtualDisk.write.average",
    "virtualDisk.writeOIO.latest",
    "sys.uptime.latest",
  ]

  host_metric_include = [
    "cpu.coreUtilization.average",
    "cpu.costop.summation",
    "cpu.demand.average",
    "cpu.idle.summation",
    "cpu.latency.average",
    "cpu.readiness.average",
    "cpu.ready.summation",
    "cpu.swapwait.summation",
    "cpu.usage.average",
    "cpu.usagemhz.average",
    "cpu.used.summation",
    "cpu.utilization.average",
    "cpu.wait.summation",
    "disk.deviceReadLatency.average",
    "disk.deviceWriteLatency.average",
    "disk.kernelReadLatency.average",
    "disk.kernelWriteLatency.average",
    "disk.numberReadAveraged.average",
    "disk.numberWriteAveraged.average",
    "disk.read.average",
    "disk.totalReadLatency.average",
    "disk.totalWriteLatency.average",
    "disk.write.average",
    "mem.active.average",
    "mem.latency.average",
    "mem.state.latest",
    "mem.swapin.average",
    "mem.swapinRate.average",
    "mem.swapout.average",
    "mem.swapoutRate.average",
    "mem.totalCapacity.average",
    "mem.usage.average",
    "mem.vmmemctl.average",
    "net.bytesRx.average",
    "net.bytesTx.average",
    "net.droppedRx.summation",
    "net.droppedTx.summation",
    "net.errorsRx.summation",
    "net.errorsTx.summation",
    "net.usage.average",
    "power.power.average",
    "storageAdapter.numberReadAveraged.average",
    "storageAdapter.numberWriteAveraged.average",
    "storageAdapter.read.average",
    "storageAdapter.write.average",
    "sys.uptime.latest",
  ]

  datacenter_metric_include = [] ## if omitted or empty, all metrics are collected
  datacenter_metric_exclude = [ "*" ] ## Datacenters are not collected by default.

  vsan_metric_include = [] ## if omitted or empty, all metrics are collected
  vsan_metric_exclude = [ "*" ] ## vSAN are not collected by default.

  separator = "_"
  max_query_objects = 256
  max_query_metrics = 256
  collect_concurrency = 1
  discover_concurrency = 1
  object_discovery_interval = "300s"
  timeout = "60s"
  use_int_samples = true
  custom_attribute_include = []
  custom_attribute_exclude = ["*"]
  metric_lookback = 3
  ssl_ca = "/path/to/cafile"
  ssl_cert = "/path/to/certfile"
  ssl_key = "/path/to/keyfile"
  insecure_skip_verify = false
  historical_interval = "5m"
  disconnected_servers_behavior = "error"
  use_system_proxy = true
  http_proxy_url = ""

Snowflake

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "snowflake"

  ## Data source name
  ## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
  ## Example DSN: "username:password@account/warehouse/db/schema"
  data_source_name = "username:password@account/warehouse/db/schema"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

VMware vSphere

  1. 动态资源分配:利用此插件监控虚拟机群的资源使用情况,并根据性能指标自动调整资源分配。 这种情况可能涉及根据从 vSphere API 收集的 CPU 和内存使用率指标实时触发扩展操作,从而确保最佳性能和成本效益。

  2. 容量规划和预测:利用从 vSphere 收集的历史指标进行容量规划。 分析 CPU、内存和存储使用率随时间推移的趋势有助于管理员预测何时需要额外资源,从而避免中断并确保虚拟基础设施能够应对增长。

  3. 自动化警报和事件响应:将此插件与警报工具集成,以根据收集的指标设置自动通知。 例如,如果主机上的 CPU 使用率超过指定阈值,则可能会触发警报并自动启动预定义的补救步骤,例如将虚拟机迁移到利用率较低的主机。

  4. 跨集群的性能基准测试:使用收集的指标来比较不同 vCenter 中集群的性能。 此基准测试提供了有关哪些集群配置产生最佳资源效率的见解,并可以指导未来的基础设施增强。

Snowflake

  1. 基于云的数据湖集成:利用该插件将来自各种来源的实时指标流式传输到 Snowflake 中,从而创建集中式数据湖。 这种集成支持云数据上的复杂分析和机器学习工作流程。

  2. 动态商业智能仪表板:利用该插件从传入指标自动生成表,并将它们馈送到 BI 工具中。 这使企业能够创建动态仪表板,可视化性能趋势和运营见解,而无需手动架构管理。

  3. 可扩展的物联网分析:部署该插件以捕获来自物联网设备的高频数据到 Snowflake 中。 此用例有助于传感器数据的聚合和分析,从而实现大规模的预测性维护和实时监控。

  4. 用于合规性的历史趋势分析:使用该插件在 Snowflake 中记录和归档详细的指标数据,然后可以查询这些数据以进行长期趋势分析和合规性报告。 这种设置确保组织可以维护强大的审计跟踪并在需要时执行取证分析。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并为可靠的消息处理提供带有 DynamoDB 的检查点功能。

查看集成