目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,这个排名第一的时序平台旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
VMware vSphere Telegraf 插件提供了一种从 VMware vCenter 服务器收集指标的方法,从而可以全面监控和管理 vSphere 环境中的虚拟资源。
此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。
集成详情
VMware vSphere
此插件连接到 VMware vSphere 服务器以收集虚拟环境中的各种指标,从而实现对虚拟资源的高效监控和管理。 它与 vSphere API 交互,收集有关集群、主机、资源池、虚拟机、数据存储和 vSAN 实体的统计信息,并以适合分析和可视化的格式呈现。 该插件对于管理基于 VMware 的基础设施的管理员尤其有价值,因为它有助于实时跟踪系统性能、资源使用情况和操作问题。 通过聚合来自多个来源的数据,该插件使用户能够获得洞察力,从而促进有关资源分配、故障排除和确保最佳系统性能的明智决策。 此外,对密钥存储集成的支持允许安全处理敏感凭据,从而促进安全和合规性评估方面的最佳实践。
IoTDB
Apache IoTDB(物联网数据库)是一个 IoT 原生数据库,具有高性能的数据管理和分析能力,可部署在边缘和云端。 其轻量级架构、高性能和丰富的功能集非常适合物联网工业领域中的海量数据存储、高速数据摄取和复杂分析。 IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,进一步增强了其处理大规模数据和复杂处理任务的能力。
配置
VMware vSphere
[[inputs.vsphere]]
vcenters = [ "https://vcenter.local/sdk" ]
username = "[email protected]"
password = "secret"
vm_metric_include = [
"cpu.demand.average",
"cpu.idle.summation",
"cpu.latency.average",
"cpu.readiness.average",
"cpu.ready.summation",
"cpu.run.summation",
"cpu.usagemhz.average",
"cpu.used.summation",
"cpu.wait.summation",
"mem.active.average",
"mem.granted.average",
"mem.latency.average",
"mem.swapin.average",
"mem.swapinRate.average",
"mem.swapout.average",
"mem.swapoutRate.average",
"mem.usage.average",
"mem.vmmemctl.average",
"net.bytesRx.average",
"net.bytesTx.average",
"net.droppedRx.summation",
"net.droppedTx.summation",
"net.usage.average",
"power.power.average",
"virtualDisk.numberReadAveraged.average",
"virtualDisk.numberWriteAveraged.average",
"virtualDisk.read.average",
"virtualDisk.readOIO.latest",
"virtualDisk.throughput.usage.average",
"virtualDisk.totalReadLatency.average",
"virtualDisk.totalWriteLatency.average",
"virtualDisk.write.average",
"virtualDisk.writeOIO.latest",
"sys.uptime.latest",
]
host_metric_include = [
"cpu.coreUtilization.average",
"cpu.costop.summation",
"cpu.demand.average",
"cpu.idle.summation",
"cpu.latency.average",
"cpu.readiness.average",
"cpu.ready.summation",
"cpu.swapwait.summation",
"cpu.usage.average",
"cpu.usagemhz.average",
"cpu.used.summation",
"cpu.utilization.average",
"cpu.wait.summation",
"disk.deviceReadLatency.average",
"disk.deviceWriteLatency.average",
"disk.kernelReadLatency.average",
"disk.kernelWriteLatency.average",
"disk.numberReadAveraged.average",
"disk.numberWriteAveraged.average",
"disk.read.average",
"disk.totalReadLatency.average",
"disk.totalWriteLatency.average",
"disk.write.average",
"mem.active.average",
"mem.latency.average",
"mem.state.latest",
"mem.swapin.average",
"mem.swapinRate.average",
"mem.swapout.average",
"mem.swapoutRate.average",
"mem.totalCapacity.average",
"mem.usage.average",
"mem.vmmemctl.average",
"net.bytesRx.average",
"net.bytesTx.average",
"net.droppedRx.summation",
"net.droppedTx.summation",
"net.errorsRx.summation",
"net.errorsTx.summation",
"net.usage.average",
"power.power.average",
"storageAdapter.numberReadAveraged.average",
"storageAdapter.numberWriteAveraged.average",
"storageAdapter.read.average",
"storageAdapter.write.average",
"sys.uptime.latest",
]
datacenter_metric_include = [] ## if omitted or empty, all metrics are collected
datacenter_metric_exclude = [ "*" ] ## Datacenters are not collected by default.
vsan_metric_include = [] ## if omitted or empty, all metrics are collected
vsan_metric_exclude = [ "*" ] ## vSAN are not collected by default.
separator = "_"
max_query_objects = 256
max_query_metrics = 256
collect_concurrency = 1
discover_concurrency = 1
object_discovery_interval = "300s"
timeout = "60s"
use_int_samples = true
custom_attribute_include = []
custom_attribute_exclude = ["*"]
metric_lookback = 3
ssl_ca = "/path/to/cafile"
ssl_cert = "/path/to/certfile"
ssl_key = "/path/to/keyfile"
insecure_skip_verify = false
historical_interval = "5m"
disconnected_servers_behavior = "error"
use_system_proxy = true
http_proxy_url = ""
IoTDB
[[outputs.iotdb]]
## Configuration of IoTDB server connection
host = "127.0.0.1"
# port = "6667"
## Configuration of authentication
# user = "root"
# password = "root"
## Timeout to open a new session.
## A value of zero means no timeout.
# timeout = "5s"
## Configuration of type conversion for 64-bit unsigned int
## IoTDB currently DOES NOT support unsigned integers (version 13.x).
## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
## however, this is not true for 64-bit values in general as overflows may occur.
## The following setting allows to specify the handling of 64-bit unsigned integers.
## Available values are:
## - "int64" -- convert to 64-bit signed integers and accept overflows
## - "int64_clip" -- convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
## - "text" -- convert to the string representation of the value
# uint64_conversion = "int64_clip"
## Configuration of TimeStamp
## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
## Available value:
## "second", "millisecond", "microsecond", "nanosecond"(default)
# timestamp_precision = "nanosecond"
## Handling of tags
## Tags are not fully supported by IoTDB.
## A guide with suggestions on how to handle tags can be found here:
## https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
##
## Available values are:
## - "fields" -- convert tags to fields in the measurement
## - "device_id" -- attach tags to the device ID
##
## For Example, a metric named "root.sg.device" with the tags `tag1: "private"` and `tag2: "working"` and
## fields `s1: 100` and `s2: "hello"` will result in the following representations in IoTDB
## - "fields" -- root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
## - "device_id" -- root.sg.device.private.working, s1=100, s2="hello"
# convert_tags_to = "device_id"
## Handling of unsupported characters
## Some characters in different versions of IoTDB are not supported in path name
## A guide with suggetions on valid paths can be found here:
## for iotdb 0.13.x -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
## for iotdb 1.x.x and above -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
##
## Available values are:
## - "1.0", "1.1", "1.2", "1.3" -- enclose in `` the world having forbidden character
## such as @ $ # : [ ] { } ( ) space
## - "0.13" -- enclose in `` the world having forbidden character
## such as space
##
## Keep this section commented if you don't want to sanitize the path
# sanitize_tag = "1.3"
输入和输出集成示例
VMware vSphere
-
动态资源分配:使用此插件监控虚拟机群的资源使用情况,并根据性能指标自动调整资源分配。 这种情况可能涉及根据从 vSphere API 收集的 CPU 和内存使用率指标实时触发扩展操作,从而确保最佳性能和成本效益。
-
容量规划和预测:利用从 vSphere 收集的历史指标进行容量规划。 分析 CPU、内存和存储使用率随时间变化的趋势,有助于管理员预测何时需要额外资源,避免停机并确保虚拟基础设施能够应对增长。
-
自动化警报和事件响应:将此插件与警报工具集成,以根据收集的指标设置自动通知。 例如,如果主机上的 CPU 使用率超过指定阈值,则可以触发警报并自动启动预定义的补救步骤,例如将虚拟机迁移到利用率较低的主机。
-
跨集群的性能基准测试:使用收集的指标来比较不同 vCenter 中集群的性能。 此基准测试提供了关于哪些集群配置产生最佳资源效率的见解,并可以指导未来的基础设施增强。
IoTDB
-
实时物联网监控:利用 IoTDB 插件从各种物联网设备收集传感器数据,并将其保存在 Apache IoTDB 后端,从而促进对温度和湿度等环境条件的实时监控。 此用例使组织能够分析随时间变化的趋势并根据历史数据做出明智的决策,同时还利用 IoTDB 的高效存储和查询功能。
-
智能农业数据收集:使用 IoTDB 插件从部署在田野中的智能农业传感器收集指标。 通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以访问有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理。
-
能源消耗分析:利用 IoTDB 插件跟踪整个公用事业网络中智能电表的能源消耗指标。 这种集成使分析能够识别使用高峰并预测未来的消耗模式,最终支持节能计划和改进的公用事业管理。
-
自动化工业设备监控:使用此插件从制造工厂的机械设备收集运行指标,并将它们存储在 IoTDB 中以进行分析。 此设置可以帮助识别效率低下、预测性维护需求和操作异常,从而确保最佳性能并最大限度地减少意外停机时间。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,这个排名第一的时序平台旨在与 Telegraf 一起扩展。
查看入门方法