Hashicorp Vault 和 IoTDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Hashicorp Vault 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 借助 InfluxDB,这是 #1 的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Telegraf 的 Hashicorp Vault 插件允许从 Hashicorp Vault 服务收集指标,从而促进监控和操作洞察。

此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。

集成详情

Hashicorp Vault

Hashicorp Vault 插件旨在从集群内运行的 Vault 代理收集指标。 它使 Telegraf(一种用于收集和报告指标的代理)能够与 Vault 服务接口,Vault 服务通常在本地地址(如 http://127.0.0.1:8200)上监听。 此插件需要有效的令牌进行授权,以确保对 Vault API 的安全访问。 用户必须直接配置令牌或提供令牌文件路径,从而提高身份验证方法的灵活性。 超时和可选 TLS 设置的正确配置进一步关系到指标收集过程的安全性和响应能力。 由于 Vault 是管理密钥和保护敏感数据的关键工具,因此通过此插件监控其性能和健康状况对于维护操作安全和效率至关重要。

IoTDB

Apache IoTDB(物联网数据库)是一种物联网原生数据库,具有用于数据管理和分析的高性能,可部署在边缘和云端。 其轻量级架构、高性能和丰富的功能集非常适合物联网工业领域中的海量数据存储、高速数据摄取和复杂分析。 IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,这进一步增强了其处理大规模数据和复杂处理任务的能力。

配置

Hashicorp Vault

[[inputs.vault]]
  ## URL for the Vault agent
  # url = "http://127.0.0.1:8200"

  ## Use Vault token for authorization.
  ## Vault token configuration is mandatory.
  ## If both are empty or both are set, an error is thrown.
  # token_file = "/path/to/auth/token"
  ## OR
  token = "s.CDDrgg5zPv5ssI0Z2P4qxJj2"

  ## Set response_timeout (default 5 seconds)
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

输入和输出集成示例

Hashicorp Vault

  1. 集中式密钥管理监控:利用 Vault 插件监控分布式系统中的多个 Vault 实例,从而统一查看密钥访问模式和系统健康状况。 此设置可以帮助 DevOps 团队快速识别密钥访问中的任何异常,从而为跨不同环境的安全态势提供必要的洞察。

  2. 审计日志集成:配置此插件以将监控指标馈送到审计日志记录系统,使组织能够全面了解其 Vault 交互。 通过将审计日志与指标关联,团队可以更有效地调查问题、优化性能并确保符合安全策略。

  3. 部署期间的性能基准测试:在与 Vault 交互的应用程序部署期间,使用此插件监控这些部署对 Vault 性能的影响。 这使工程团队能够了解更改如何影响密钥管理工作流程,并主动解决性能瓶颈,从而确保平稳的部署过程。

  4. 超出阈值的警报:将此插件与警报机制集成,以便在指标超出预定义阈值时通知管理员。 这种主动监控可以帮助团队快速响应潜在问题,通过允许他们在任何严重事件发生之前采取行动来维护系统可靠性和正常运行时间。

IoTDB

  1. 实时物联网监控:利用 IoTDB 插件收集来自各种物联网设备的传感器数据,并将其保存在 Apache IoTDB 后端,从而促进对环境条件(如温度和湿度)的实时监控。 此用例使组织能够分析随时间变化的趋势,并根据历史数据做出明智的决策,同时利用 IoTDB 的高效存储和查询功能。

  2. 智慧农业数据采集:使用 IoTDB 插件收集来自部署在田野中的智慧农业传感器的指标。 通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以获得有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理水平。

  3. 能源消耗分析:利用 IoTDB 插件跟踪来自整个公用事业网络智能电表的能源消耗指标。 这种集成使分析能够识别使用高峰并预测未来的消耗模式,最终支持节能措施和改进的公用事业管理。

  4. 自动化工业设备监控:使用此插件收集来自制造工厂机械的操作指标,并将其存储在 IoTDB 中进行分析。 此设置可以帮助识别效率低下、预测性维护需求和操作异常,从而确保最佳性能并最大限度地减少意外停机时间。

反馈

感谢您成为我们社区的一份子! 如果您对这些页面有任何一般性反馈或发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 借助 InfluxDB,这是 #1 的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成