Tail 和 VictoriaMetrics 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Tail 和 InfluxDB。

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Tail Telegraf 插件通过跟踪指定的日志文件来收集指标,实时捕获新的日志条目以进行进一步分析。

此插件使 Telegraf 能够使用 InfluxDB 行协议将指标有效地直接写入 VictoriaMetrics,从而利用 VictoriaMetrics 的性能和可扩展性特性来处理大规模时间序列数据。

集成详情

Tail

tail 插件旨在持续监控和解析日志文件,使其成为实时日志分析和监控的理想选择。它模仿 Unix `tail` 命令的功能,允许用户指定文件或模式,并在添加新行时开始读取。主要功能包括跟踪日志轮换文件、从文件末尾开始读取以及支持日志消息的各种解析格式。用户可以通过各种配置选项自定义插件,例如指定文件编码、监视文件更新的方法以及处理日志数据的过滤器设置。此插件在日志数据对于监控应用程序性能和诊断问题至关重要的环境中尤其有价值。

VictoriaMetrics

VictoriaMetrics 支持直接摄取 InfluxDB 行协议中的指标,这使得此插件成为高效实时指标存储和检索的理想选择。该集成结合了 Telegraf 广泛的指标收集能力和 VictoriaMetrics 优化的存储和查询功能,包括压缩、快速摄取速率和高效的磁盘利用率。此插件是云原生和大规模监控场景的理想选择,它提供了简单性、强大的性能和高可靠性,为大量指标实现了高级运营洞察和长期存储解决方案。

配置

Tail

[[inputs.tail]]
  ## File names or a pattern to tail.
  ## These accept standard unix glob matching rules, but with the addition of
  ## ** as a "super asterisk". ie:
  ##   "/var/log/**.log"  -> recursively find all .log files in /var/log
  ##   "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
  ##   "/var/log/apache.log" -> just tail the apache log file
  ##   "/var/log/log[!1-2]*  -> tail files without 1-2
  ##   "/var/log/log[^1-2]*  -> identical behavior as above
  ## See https://github.com/gobwas/glob for more examples
  ##
  files = ["/var/mymetrics.out"]

  ## Read file from beginning.
  # from_beginning = false

  ## Whether file is a named pipe
  # pipe = false

  ## Method used to watch for file updates.  Can be either "inotify" or "poll".
  ## inotify is supported on linux, *bsd, and macOS, while Windows requires
  ## using poll. Poll checks for changes every 250ms.
  # watch_method = "inotify"

  ## Maximum lines of the file to process that have not yet be written by the
  ## output.  For best throughput set based on the number of metrics on each
  ## line and the size of the output's metric_batch_size.
  # max_undelivered_lines = 1000

  ## Character encoding to use when interpreting the file contents.  Invalid
  ## characters are replaced using the unicode replacement character.  When set
  ## to the empty string the data is not decoded to text.
  ##   ex: character_encoding = "utf-8"
  ##       character_encoding = "utf-16le"
  ##       character_encoding = "utf-16be"
  ##       character_encoding = ""
  # character_encoding = ""

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
  # path_tag = "path"

  ## Filters to apply to files before generating metrics
  ## "ansi_color" removes ANSI colors
  # filters = []

  ## multiline parser/codec
  ## https://elastic.ac.cn/guide/en/logstash/2.4/plugins-filters-multiline.html
  #[inputs.tail.multiline]
    ## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
    #pattern = "^\s"

    ## The field's value must be previous or next and indicates the relation to the
    ## multi-line event.
    #match_which_line = "previous"

    ## The invert_match can be true or false (defaults to false).
    ## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
    #invert_match = false

    ## The handling method for quoted text (defaults to 'ignore').
    ## The following methods are available:
    ##   ignore  -- do not consider quotation (default)
    ##   single-quotes -- consider text quoted by single quotes (')
    ##   double-quotes -- consider text quoted by double quotes (")
    ##   backticks     -- consider text quoted by backticks (`)
    ## When handling quotes, escaped quotes (e.g. \") are handled correctly.
    #quotation = "ignore"

    ## The preserve_newline option can be true or false (defaults to false).
    ## If true, the newline character is preserved for multiline elements,
    ## this is useful to preserve message-structure e.g. for logging outputs.
    #preserve_newline = false

    #After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
    #timeout = 5s

VictoriaMetrics

[[outputs.influxdb]]
  ## URL of the VictoriaMetrics write endpoint
  urls = ["http://localhost:8428"]

  ## VictoriaMetrics accepts InfluxDB line protocol directly
  database = "db_name"

  ## Optional authentication
  # username = "username"
  # password = "password"
  # skip_database_creation = true
  # exclude_retention_policy_tag = true
  # content_encoding = "gzip"

  ## Timeout for HTTP requests
  timeout = "5s"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

Tail

  1. 实时服务器健康状况监控:实施 Tail 插件以实时解析 Web 服务器访问日志,从而立即了解用户活动、错误率和性能指标。通过可视化此日志数据,运维团队可以快速识别和响应流量或错误的峰值,从而提高系统可靠性和用户体验。

  2. 集中式日志管理:利用 Tail 插件聚合分布式系统中来自多个来源的日志。通过配置每个服务以通过 Tail 插件将其日志发送到集中位置,团队可以简化日志分析并确保可以从单个界面访问所有相关数据,从而简化故障排除过程。

  3. 安全事件检测:使用此插件监控身份验证日志,以查找未经授权的访问尝试或可疑活动。通过对某些日志消息设置警报,团队可以利用此插件来增强安全态势并及时响应潜在的安全威胁,从而降低泄露风险并提高整体系统完整性。

  4. 动态应用程序性能洞察:与分析工具集成以创建实时仪表板,这些仪表板根据日志数据展示应用程序性能指标。此设置不仅可以帮助开发人员诊断瓶颈和效率低下问题,还可以实现主动性能调整和资源分配,从而优化应用程序在不同负载下的行为。

VictoriaMetrics

  1. 云原生应用程序监控:将 Kubernetes 上部署的微服务的指标直接流式传输到 VictoriaMetrics。通过集中式指标,组织可以在动态演进的云环境中执行实时监控、快速异常检测和无缝可扩展性。

  2. 可扩展的物联网数据管理:使用此插件将来自物联网部署的传感器数据摄取到 VictoriaMetrics 中。这种方法有助于实时分析、预测性维护以及以最小的存储开销高效管理海量传感器数据。

  3. 金融系统性能跟踪:通过此插件利用 VictoriaMetrics 来存储和分析来自金融系统的指标,捕获延迟、交易量和错误率。组织可以快速识别和解决性能瓶颈,从而确保高可用性和法规遵从性。

  4. 跨环境性能仪表板:将来自不同基础设施组件(例如云实例、容器和物理服务器)的指标集成到 VictoriaMetrics 中。使用可视化工具,团队可以构建用于端到端性能可见性、主动故障排除和基础设施优化的综合仪表板。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 进行检查点操作的功能,以实现可靠的消息处理。

查看集成