Tail 和 Loki 集成

强大的性能和简单的集成,由 Telegraf 驱动,Telegraf 是由 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Tail 和 InfluxDB。

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 借助 InfluxDB,第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Tail Telegraf 插件通过跟踪指定的日志文件来收集指标,实时捕获新的日志条目以进行进一步分析。

Loki 插件允许用户将日志发送到 Loki 以进行聚合和查询,从而利用 Loki 高效的存储能力。

集成详情

Tail

tail 插件旨在持续监控和解析日志文件,使其成为实时日志分析和监控的理想选择。 它模仿 Unix tail 命令的功能,允许用户指定文件或模式,并开始读取添加的新行。 主要功能包括跟踪日志轮换文件、从文件末尾开始读取以及支持日志消息的各种解析格式。 用户可以通过各种配置选项自定义插件,例如指定文件编码、监视文件更新的方法以及处理日志数据的过滤器设置。 在日志数据对于监控应用程序性能和诊断问题至关重要的环境中,此插件尤其有价值。

Loki

此 Loki 插件与 Grafana Loki 集成,Grafana Loki 是一个强大的日志聚合系统。 通过以与 Loki 兼容的格式发送日志,此插件可以高效地存储和查询日志。 每个日志条目都以键值格式结构化,其中键表示字段名称,值表示相应的日志信息。 按时间戳对日志进行排序可确保通过 Loki 查询时,日志流保持时间顺序。 此插件对密钥的支持使得安全管理身份验证参数变得更加容易,而 HTTP 标头、gzip 编码和 TLS 配置的选项增强了日志传输的适应性和安全性,从而满足各种部署需求。

配置

Tail

[[inputs.tail]]
  ## File names or a pattern to tail.
  ## These accept standard unix glob matching rules, but with the addition of
  ## ** as a "super asterisk". ie:
  ##   "/var/log/**.log"  -> recursively find all .log files in /var/log
  ##   "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
  ##   "/var/log/apache.log" -> just tail the apache log file
  ##   "/var/log/log[!1-2]*  -> tail files without 1-2
  ##   "/var/log/log[^1-2]*  -> identical behavior as above
  ## See https://github.com/gobwas/glob for more examples
  ##
  files = ["/var/mymetrics.out"]

  ## Read file from beginning.
  # from_beginning = false

  ## Whether file is a named pipe
  # pipe = false

  ## Method used to watch for file updates.  Can be either "inotify" or "poll".
  ## inotify is supported on linux, *bsd, and macOS, while Windows requires
  ## using poll. Poll checks for changes every 250ms.
  # watch_method = "inotify"

  ## Maximum lines of the file to process that have not yet be written by the
  ## output.  For best throughput set based on the number of metrics on each
  ## line and the size of the output's metric_batch_size.
  # max_undelivered_lines = 1000

  ## Character encoding to use when interpreting the file contents.  Invalid
  ## characters are replaced using the unicode replacement character.  When set
  ## to the empty string the data is not decoded to text.
  ##   ex: character_encoding = "utf-8"
  ##       character_encoding = "utf-16le"
  ##       character_encoding = "utf-16be"
  ##       character_encoding = ""
  # character_encoding = ""

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
  # path_tag = "path"

  ## Filters to apply to files before generating metrics
  ## "ansi_color" removes ANSI colors
  # filters = []

  ## multiline parser/codec
  ## https://elastic.ac.cn/guide/en/logstash/2.4/plugins-filters-multiline.html
  #[inputs.tail.multiline]
    ## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
    #pattern = "^\s"

    ## The field's value must be previous or next and indicates the relation to the
    ## multi-line event.
    #match_which_line = "previous"

    ## The invert_match can be true or false (defaults to false).
    ## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
    #invert_match = false

    ## The handling method for quoted text (defaults to 'ignore').
    ## The following methods are available:
    ##   ignore  -- do not consider quotation (default)
    ##   single-quotes -- consider text quoted by single quotes (')
    ##   double-quotes -- consider text quoted by double quotes (")
    ##   backticks     -- consider text quoted by backticks (`)
    ## When handling quotes, escaped quotes (e.g. \") are handled correctly.
    #quotation = "ignore"

    ## The preserve_newline option can be true or false (defaults to false).
    ## If true, the newline character is preserved for multiline elements,
    ## this is useful to preserve message-structure e.g. for logging outputs.
    #preserve_newline = false

    #After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
    #timeout = 5s

Loki

[[outputs.loki]]
  ## The domain of Loki
  domain = "https://loki.domain.tld"

  ## Endpoint to write api
  # endpoint = "/loki/api/v1/push"

  ## Connection timeout, defaults to "5s" if not set.
  # timeout = "5s"

  ## Basic auth credential
  # username = "loki"
  # password = "pass"

  ## Additional HTTP headers
  # http_headers = {"X-Scope-OrgID" = "1"}

  ## If the request must be gzip encoded
  # gzip_request = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Sanitize Tag Names
  ## If true, all tag names will have invalid characters replaced with
  ## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
  # sanitize_label_names = false

  ## Metric Name Label
  ## Label to use for the metric name to when sending metrics. If set to an
  ## empty string, this will not add the label. This is NOT suggested as there
  ## is no way to differentiate between multiple metrics.
  # metric_name_label = "__name"

输入和输出集成示例

Tail

  1. 实时服务器健康状况监控: 实施 Tail 插件以实时解析 Web 服务器访问日志,从而立即了解用户活动、错误率和性能指标。 通过可视化此日志数据,运营团队可以快速识别并响应流量或错误峰值,从而提高系统可靠性和用户体验。

  2. 集中式日志管理: 利用 Tail 插件聚合来自分布式系统中多个来源的日志。 通过配置每个服务以通过 Tail 插件将其日志发送到集中位置,团队可以简化日志分析,并确保从单个界面访问所有相关数据,从而简化故障排除流程。

  3. 安全事件检测: 使用此插件监控身份验证日志,以检测未经授权的访问尝试或可疑活动。 通过对某些日志消息设置警报,团队可以利用此插件增强安全态势,并及时响应潜在的安全威胁,从而降低漏洞风险并提高整体系统完整性。

  4. 动态应用程序性能洞察: 与分析工具集成,以创建实时仪表板,显示基于日志数据的应用程序性能指标。 此设置不仅可以帮助开发人员诊断瓶颈和效率低下问题,还可以实现主动性能调整和资源分配,从而优化应用程序在不同负载下的行为。

Loki

  1. 微服务集中式日志记录: 利用 Loki 插件收集在 Kubernetes 集群中运行的多个微服务的日志。 通过将日志定向到集中式 Loki 实例,开发人员可以在一个位置监控、搜索和分析来自所有服务的日志,从而简化故障排除和性能监控。 此设置简化了运营,并支持对分布式应用程序中的问题做出快速响应。

  2. 实时日志异常检测: 将 Loki 与监控工具结合使用,以实时分析日志输出中可能指示系统错误或安全威胁的异常模式。 在日志流上实施异常检测使团队能够主动识别和响应事件,从而提高系统可靠性并增强安全态势。

  3. 通过 Gzip 压缩增强日志处理: 配置 Loki 插件以利用 gzip 压缩进行日志传输。 这种方法可以减少带宽使用并提高传输速度,这在网络带宽可能受限的环境中尤其有利。 它对于高容量日志记录应用程序特别有用,在这些应用程序中,每个字节都很重要,并且性能至关重要。

  4. 通过自定义标头支持多租户: 利用添加自定义 HTTP 标头的功能,在多租户应用程序环境中隔离来自不同租户的日志。 通过使用 Loki 插件为每个租户发送不同的标头,运营商可以确保适当的日志管理并符合数据隔离要求,使其成为 SaaS 应用程序的通用解决方案。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 借助 InfluxDB,第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成