Tail 和 IoTDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Tail 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 的下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Tail Telegraf 插件通过跟踪指定的日志文件来收集指标,实时捕获新的日志条目以进行进一步分析。

此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。

集成详情

Tail

tail 插件旨在持续监控和解析日志文件,使其成为实时日志分析和监控的理想选择。它模仿 Unix tail 命令的功能,允许用户指定文件或模式,并在添加新行时开始读取。主要功能包括跟踪日志轮换文件、从文件末尾开始读取以及支持日志消息的各种解析格式。用户可以通过各种配置选项自定义插件,例如指定文件编码、监视文件更新的方法以及处理日志数据的过滤器设置。此插件在日志数据对于监控应用程序性能和诊断问题至关重要的环境中尤其有价值。

IoTDB

Apache IoTDB(物联网数据库)是一种物联网原生数据库,具有高性能的数据管理和分析能力,可部署在边缘和云端。其轻量级架构、高性能和丰富的功能集非常适合物联网工业领域的大规模数据存储、高速数据摄取和复杂分析。IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,进一步增强了其处理大规模数据和复杂处理任务的能力。

配置

Tail

[[inputs.tail]]
  ## File names or a pattern to tail.
  ## These accept standard unix glob matching rules, but with the addition of
  ## ** as a "super asterisk". ie:
  ##   "/var/log/**.log"  -> recursively find all .log files in /var/log
  ##   "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
  ##   "/var/log/apache.log" -> just tail the apache log file
  ##   "/var/log/log[!1-2]*  -> tail files without 1-2
  ##   "/var/log/log[^1-2]*  -> identical behavior as above
  ## See https://github.com/gobwas/glob for more examples
  ##
  files = ["/var/mymetrics.out"]

  ## Read file from beginning.
  # from_beginning = false

  ## Whether file is a named pipe
  # pipe = false

  ## Method used to watch for file updates.  Can be either "inotify" or "poll".
  ## inotify is supported on linux, *bsd, and macOS, while Windows requires
  ## using poll. Poll checks for changes every 250ms.
  # watch_method = "inotify"

  ## Maximum lines of the file to process that have not yet be written by the
  ## output.  For best throughput set based on the number of metrics on each
  ## line and the size of the output's metric_batch_size.
  # max_undelivered_lines = 1000

  ## Character encoding to use when interpreting the file contents.  Invalid
  ## characters are replaced using the unicode replacement character.  When set
  ## to the empty string the data is not decoded to text.
  ##   ex: character_encoding = "utf-8"
  ##       character_encoding = "utf-16le"
  ##       character_encoding = "utf-16be"
  ##       character_encoding = ""
  # character_encoding = ""

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
  # path_tag = "path"

  ## Filters to apply to files before generating metrics
  ## "ansi_color" removes ANSI colors
  # filters = []

  ## multiline parser/codec
  ## https://elastic.ac.cn/guide/en/logstash/2.4/plugins-filters-multiline.html
  #[inputs.tail.multiline]
    ## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
    #pattern = "^\s"

    ## The field's value must be previous or next and indicates the relation to the
    ## multi-line event.
    #match_which_line = "previous"

    ## The invert_match can be true or false (defaults to false).
    ## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
    #invert_match = false

    ## The handling method for quoted text (defaults to 'ignore').
    ## The following methods are available:
    ##   ignore  -- do not consider quotation (default)
    ##   single-quotes -- consider text quoted by single quotes (')
    ##   double-quotes -- consider text quoted by double quotes (")
    ##   backticks     -- consider text quoted by backticks (`)
    ## When handling quotes, escaped quotes (e.g. \") are handled correctly.
    #quotation = "ignore"

    ## The preserve_newline option can be true or false (defaults to false).
    ## If true, the newline character is preserved for multiline elements,
    ## this is useful to preserve message-structure e.g. for logging outputs.
    #preserve_newline = false

    #After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
    #timeout = 5s

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

输入和输出集成示例

Tail

  1. 实时服务器健康状况监控:实施 Tail 插件以实时解析 Web 服务器访问日志,从而立即了解用户活动、错误率和性能指标。通过可视化此日志数据,运营团队可以快速识别并响应流量或错误峰值,从而提高系统可靠性和用户体验。

  2. 集中式日志管理:利用 Tail 插件聚合分布式系统中多个来源的日志。通过配置每个服务以通过 Tail 插件将其日志发送到集中位置,团队可以简化日志分析,并确保可以从单个界面访问所有相关数据,从而简化故障排除流程。

  3. 安全事件检测:使用此插件监控身份验证日志,以查找未经授权的访问尝试或可疑活动。通过对某些日志消息设置警报,团队可以利用此插件来增强安全态势并及时响应潜在的安全威胁,从而降低漏洞风险并提高整体系统完整性。

  4. 动态应用程序性能洞察:与分析工具集成以创建实时仪表板,该仪表板基于日志数据展示应用程序性能指标。此设置不仅可以帮助开发人员诊断瓶颈和效率低下问题,还可以实现主动的性能调整和资源分配,从而在不同负载下优化应用程序行为。

IoTDB

  1. 实时物联网监控:利用 IoTDB 插件收集来自各种物联网设备的传感器数据,并将其保存在 Apache IoTDB 后端中,从而实现对温度和湿度等环境条件的实时监控。此用例使组织能够分析随时间变化的趋势,并根据历史数据做出明智的决策,同时利用 IoTDB 的高效存储和查询功能。

  2. 智能农业数据收集:使用 IoTDB 插件收集来自部署在田野中的智能农业传感器的指标。通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以访问有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理水平。

  3. 能耗分析:利用 IoTDB 插件跟踪整个公用事业网络中智能电表的能耗指标。此集成支持分析以识别使用高峰并预测未来的消耗模式,最终支持节能举措和改进的公用事业管理。

  4. 自动化工业设备监控:使用此插件收集制造工厂中机器的操作指标,并将其存储在 IoTDB 中进行分析。此设置可以帮助识别效率低下、预测性维护需求和操作异常,从而确保最佳性能并最大限度地减少意外停机时间。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供了使用 DynamoDB 的检查点功能。

查看集成