Tail 和 Cortex 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是实时大规模查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Tail 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 的下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Tail Telegraf 插件通过跟踪指定的日志文件来收集指标,实时捕获新的日志条目以进行进一步分析。

此插件使 Telegraf 能够使用 Prometheus 远程写入协议将指标发送到 Cortex,从而实现无缝摄取到 Cortex 的可扩展、多租户时间序列存储中。

集成详情

Tail

tail 插件旨在持续监控和解析日志文件,非常适合实时日志分析和监控。它模仿 Unix tail 命令的功能,允许用户指定文件或模式,并在添加新行时开始读取。主要功能包括跟踪日志轮换文件、从文件末尾开始读取以及支持日志消息的各种解析格式。用户可以通过各种配置选项自定义插件,例如指定文件编码、监视文件更新的方法以及处理日志数据的过滤器设置。在日志数据对于监控应用程序性能和诊断问题至关重要的环境中,此插件尤其有价值。

Cortex

借助 Telegraf 的 HTTP 输出插件和 prometheusremotewrite 数据格式,您可以将指标直接发送到 Cortex,Cortex 是 Prometheus 的水平可扩展、长期存储后端。Cortex 支持多租户,并使用 Prometheus protobuf 格式接受远程写入请求。通过使用 Telegraf 作为收集代理,并使用远程写入作为传输机制,组织可以将可观测性扩展到 Prometheus 本身不支持的来源(例如 Windows 主机、启用 SNMP 的设备或自定义应用程序指标),同时利用 Cortex 的高可用性和长期保留能力。

配置

Tail

[[inputs.tail]]
  ## File names or a pattern to tail.
  ## These accept standard unix glob matching rules, but with the addition of
  ## ** as a "super asterisk". ie:
  ##   "/var/log/**.log"  -> recursively find all .log files in /var/log
  ##   "/var/log/*/*.log" -> find all .log files with a parent dir in /var/log
  ##   "/var/log/apache.log" -> just tail the apache log file
  ##   "/var/log/log[!1-2]*  -> tail files without 1-2
  ##   "/var/log/log[^1-2]*  -> identical behavior as above
  ## See https://github.com/gobwas/glob for more examples
  ##
  files = ["/var/mymetrics.out"]

  ## Read file from beginning.
  # from_beginning = false

  ## Whether file is a named pipe
  # pipe = false

  ## Method used to watch for file updates.  Can be either "inotify" or "poll".
  ## inotify is supported on linux, *bsd, and macOS, while Windows requires
  ## using poll. Poll checks for changes every 250ms.
  # watch_method = "inotify"

  ## Maximum lines of the file to process that have not yet be written by the
  ## output.  For best throughput set based on the number of metrics on each
  ## line and the size of the output's metric_batch_size.
  # max_undelivered_lines = 1000

  ## Character encoding to use when interpreting the file contents.  Invalid
  ## characters are replaced using the unicode replacement character.  When set
  ## to the empty string the data is not decoded to text.
  ##   ex: character_encoding = "utf-8"
  ##       character_encoding = "utf-16le"
  ##       character_encoding = "utf-16be"
  ##       character_encoding = ""
  # character_encoding = ""

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ## Set the tag that will contain the path of the tailed file. If you don't want this tag, set it to an empty string.
  # path_tag = "path"

  ## Filters to apply to files before generating metrics
  ## "ansi_color" removes ANSI colors
  # filters = []

  ## multiline parser/codec
  ## https://elastic.ac.cn/guide/en/logstash/2.4/plugins-filters-multiline.html
  #[inputs.tail.multiline]
    ## The pattern should be a regexp which matches what you believe to be an indicator that the field is part of an event consisting of multiple lines of log data.
    #pattern = "^\s"

    ## The field's value must be previous or next and indicates the relation to the
    ## multi-line event.
    #match_which_line = "previous"

    ## The invert_match can be true or false (defaults to false).
    ## If true, a message not matching the pattern will constitute a match of the multiline filter and the what will be applied. (vice-versa is also true)
    #invert_match = false

    ## The handling method for quoted text (defaults to 'ignore').
    ## The following methods are available:
    ##   ignore  -- do not consider quotation (default)
    ##   single-quotes -- consider text quoted by single quotes (')
    ##   double-quotes -- consider text quoted by double quotes (")
    ##   backticks     -- consider text quoted by backticks (`)
    ## When handling quotes, escaped quotes (e.g. \") are handled correctly.
    #quotation = "ignore"

    ## The preserve_newline option can be true or false (defaults to false).
    ## If true, the newline character is preserved for multiline elements,
    ## this is useful to preserve message-structure e.g. for logging outputs.
    #preserve_newline = false

    #After the specified timeout, this plugin sends the multiline event even if no new pattern is found to start a new event. The default is 5s.
    #timeout = 5s

Cortex

[[outputs.http]]
  ## Cortex Remote Write endpoint
  url = "http://cortex.example.com/api/v1/push"

  ## Use POST to send data
  method = "POST"

  ## Send metrics using Prometheus remote write format
  data_format = "prometheusremotewrite"

  ## Optional HTTP headers for authentication
  # [outputs.http.headers]
  #   X-Scope-OrgID = "your-tenant-id"
  #   Authorization = "Bearer YOUR_API_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

输入和输出集成示例

Tail

  1. 实时服务器健康状况监控:实施 Tail 插件以实时解析 Web 服务器访问日志,从而立即了解用户活动、错误率和性能指标。通过可视化此日志数据,运营团队可以快速识别并响应流量或错误的峰值,从而提高系统可靠性和用户体验。

  2. 集中式日志管理:利用 Tail 插件来聚合分布式系统中多个来源的日志。通过配置每个服务以通过 Tail 插件将其日志发送到集中位置,团队可以简化日志分析,并确保可以从单个界面访问所有相关数据,从而简化故障排除流程。

  3. 安全事件检测:使用此插件监控身份验证日志,以查找未经授权的访问尝试或可疑活动。通过设置针对特定日志消息的警报,团队可以利用此插件来增强安全态势并及时响应潜在的安全威胁,从而降低违规风险并提高整体系统完整性。

  4. 动态应用程序性能洞察:与分析工具集成,以创建实时仪表板,这些仪表板根据日志数据展示应用程序性能指标。这种设置不仅可以帮助开发人员诊断瓶颈和效率低下问题,还可以进行主动性能调整和资源分配,从而优化应用程序在不同负载下的行为。

Cortex

  1. 统一多租户监控:使用 Telegraf 从不同的团队或环境收集指标,并将它们推送到 Cortex,并带有单独的 X-Scope-OrgID 标头。这实现了每个租户的隔离数据摄取和查询,非常适合托管服务和平台团队。

  2. 将 Prometheus 覆盖范围扩展到边缘设备:在边缘或物联网设备上部署 Telegraf 以收集系统指标,并将它们发送到集中的 Cortex 集群。即使对于没有本地 Prometheus 抓取器的环境,此方法也能确保一致的可观测性。

  3. 具有联邦租户的全球服务可观测性:通过配置 Telegraf 代理将数据推送到区域 Cortex 集群(每个集群都标记有租户标识符),从而聚合来自全球基础设施的指标。Cortex 处理跨区域的重复数据删除和集中式访问。

  4. 自定义应用程序遥测管道:通过 Telegraf 的 exechttp 输入插件收集特定于应用程序的遥测数据,并将其转发到 Cortex。这使 DevOps 团队能够以可扩展、查询高效的格式监控特定于应用程序的 KPI,同时保持指标按租户或服务进行逻辑分组。

反馈

感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成