目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 使用 InfluxDB,第一名的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
Syslog 插件可以使用标准网络协议从各种来源收集 syslog 消息。 此功能对于需要高效监控和记录系统的环境至关重要。
此输出插件提供了一种可靠高效的机制,用于将 Telegraf 收集的指标直接路由到 TimescaleDB。 通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时间序列优化,它支持高性能数据摄取和高级查询功能。
集成详情
Syslog
Telegraf 的 Syslog 插件捕获通过各种协议(如 TCP、UDP 和 TLS)传输的 syslog 消息。 它支持 RFC 5424(较新的 syslog 协议)和较旧的 RFC 3164(BSD syslog 协议)。 此插件作为服务输入运行,有效地启动一个服务来侦听传入的 syslog 消息。 与传统插件不同,服务输入可能无法与标准间隔设置或 CLI 选项(如 `--once`)一起使用。 它包括用于设置网络配置、套接字权限、消息处理和连接处理的选项。 此外,与 Rsyslog 的集成允许转发日志消息,使其成为实时收集和中继系统日志的强大工具,从而无缝集成到监控和日志记录系统中。
TimescaleDB
TimescaleDB 是一个开源时间序列数据库,作为 PostgreSQL 的扩展构建,旨在高效处理大规模、面向时间的数据。 TimescaleDB 于 2017 年推出,是为了响应对强大、可扩展的解决方案日益增长的需求,该解决方案可以管理海量数据,并具有高插入率和复杂查询。 通过利用 PostgreSQL 熟悉的 SQL 界面并使用专门的时间序列功能对其进行增强,TimescaleDB 迅速在希望将时间序列功能集成到现有关系数据库中的开发人员中流行起来。 它的混合方法使用户可以从 PostgreSQL 的灵活性、可靠性和生态系统中受益,同时为时间序列数据提供优化的性能。
该数据库在需要快速摄取数据点以及对历史时期进行复杂分析查询的环境中尤其有效。 TimescaleDB 具有许多创新功能,例如超表,它可以透明地将数据划分为可管理的块,以及内置的连续聚合。 这些功能可以显着提高查询速度和资源效率。
配置
Syslog
[[inputs.syslog]]
## Protocol, address and port to host the syslog receiver.
## If no host is specified, then localhost is used.
## If no port is specified, 6514 is used (RFC5425#section-4.1).
## ex: server = "tcp://localhost:6514"
## server = "udp://:6514"
## server = "unix:///var/run/telegraf-syslog.sock"
## When using tcp, consider using 'tcp4' or 'tcp6' to force the usage of IPv4
## or IPV6 respectively. There are cases, where when not specified, a system
## may force an IPv4 mapped IPv6 address.
server = "tcp://127.0.0.1:6514"
## Permission for unix sockets (only available on unix sockets)
## This setting may not be respected by some platforms. To safely restrict
## permissions it is recommended to place the socket into a previously
## created directory with the desired permissions.
## ex: socket_mode = "777"
# socket_mode = ""
## Maximum number of concurrent connections (only available on stream sockets like TCP)
## Zero means unlimited.
# max_connections = 0
## Read timeout (only available on stream sockets like TCP)
## Zero means unlimited.
# read_timeout = "0s"
## Optional TLS configuration (only available on stream sockets like TCP)
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Enables client authentication if set.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Maximum socket buffer size (in bytes when no unit specified)
## For stream sockets, once the buffer fills up, the sender will start
## backing up. For datagram sockets, once the buffer fills up, metrics will
## start dropping. Defaults to the OS default.
# read_buffer_size = "64KiB"
## Period between keep alive probes (only applies to TCP sockets)
## Zero disables keep alive probes. Defaults to the OS configuration.
# keep_alive_period = "5m"
## Content encoding for message payloads
## Can be set to "gzip" for compressed payloads or "identity" for no encoding.
# content_encoding = "identity"
## Maximum size of decoded packet (in bytes when no unit specified)
# max_decompression_size = "500MB"
## Framing technique used for messages transport
## Available settings are:
## octet-counting -- see RFC5425#section-4.3.1 and RFC6587#section-3.4.1
## non-transparent -- see RFC6587#section-3.4.2
# framing = "octet-counting"
## The trailer to be expected in case of non-transparent framing (default = "LF").
## Must be one of "LF", or "NUL".
# trailer = "LF"
## Whether to parse in best effort mode or not (default = false).
## By default best effort parsing is off.
# best_effort = false
## The RFC standard to use for message parsing
## By default RFC5424 is used. RFC3164 only supports UDP transport (no streaming support)
## Must be one of "RFC5424", or "RFC3164".
# syslog_standard = "RFC5424"
## Character to prepend to SD-PARAMs (default = "_").
## A syslog message can contain multiple parameters and multiple identifiers within structured data section.
## Eg., [id1 name1="val1" name2="val2"][id2 name1="val1" nameA="valA"]
## For each combination a field is created.
## Its name is created concatenating identifier, sdparam_separator, and parameter name.
# sdparam_separator = "_"
TimescaleDB
# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped. Points containing fields for which there is no
## column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values
## (Postgres does not have a native unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns > 1, and a temporary error occurs, the query is
## retried with an incremental backoff. This controls the maximum duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using
## tags_as_foreign_keys). This is an optimization to skip inserting known
## tag IDs. Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Cut column names at the given length to not exceed PostgreSQL's
## 'identifier length' limit (default: no limit)
## (see https://postgresql.ac.cn/docs/current/limits.html)
## Be careful to not create duplicate column names!
# column_name_length_limit = 0
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
Syslog
-
集中日志管理:使用 Syslog 插件将来自多台服务器的日志消息聚合到中央日志记录系统中。 此设置可以通过收集来自不同来源的 syslog 数据,帮助监控整体系统健康状况、有效排除问题并维护审计跟踪。
-
实时警报:将 Syslog 插件与警报工具集成,以便在检测到特定日志模式或错误时触发实时通知。 例如,如果日志中出现严重系统错误,则可以向运维团队发送警报,从而最大限度地减少停机时间并执行主动维护。
-
安全监控:利用 Syslog 插件通过捕获来自防火墙、入侵检测系统和其他安全设备的日志来进行安全监控。 这种日志记录功能增强了安全可见性,并通过分析捕获的 syslog 数据,有助于调查潜在的恶意活动。
-
应用程序性能跟踪:利用 Syslog 插件通过收集来自各种应用程序的日志来监控应用程序性能。 这种集成有助于分析应用程序的行为和性能趋势,从而有助于优化应用程序流程并确保更流畅的运行。
TimescaleDB
-
实时物联网 (IoT) 数据摄取:使用插件实时收集和存储来自数千个物联网设备的传感器数据。 此设置有助于立即分析,帮助组织监控运营效率并快速响应不断变化的状况。
-
云应用程序性能监控:利用插件将分布式云应用程序的详细性能指标馈送到 TimescaleDB 中。 这种集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。
-
历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中,以进行全面的历史分析。 这种方法允许企业执行趋势分析、生成详细报告并根据存档的时间序列数据做出数据驱动的决策。
-
自适应警报和异常检测:将插件与自动化异常检测工作流程集成。 通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式并在发生异常时触发警报,从而提高系统可靠性和主动维护能力。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 使用 InfluxDB,第一名的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法