Syslog 和 IoTDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Syslog 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Syslog 插件可以使用标准网络协议从各种来源收集 syslog 消息。此功能对于需要有效监控和记录系统的环境至关重要。

此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。

集成详情

Syslog

Telegraf 的 Syslog 插件捕获通过各种协议(如 TCP、UDP 和 TLS)传输的 syslog 消息。它支持 RFC 5424(较新的 syslog 协议)和较旧的 RFC 3164(BSD syslog 协议)。此插件作为服务输入运行,有效地启动一个服务来侦听传入的 syslog 消息。与传统插件不同,服务输入可能无法与标准间隔设置或 CLI 选项(如 --once)一起使用。它包括用于设置网络配置、套接字权限、消息处理和连接处理的选项。此外,与 Rsyslog 的集成允许转发日志消息,使其成为实时收集和中继系统日志的强大工具,从而无缝集成到监控和日志记录系统中。

IoTDB

Apache IoTDB(物联网数据库)是一个 IoT 原生数据库,具有用于数据管理和分析的高性能,可部署在边缘和云端。其轻量级架构、高性能和丰富的功能集非常适合物联网工业领域的大规模数据存储、高速数据摄取和复杂分析。IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,进一步增强了其处理大规模数据和复杂处理任务的能力。

配置

Syslog

[[inputs.syslog]]
  ## Protocol, address and port to host the syslog receiver.
  ## If no host is specified, then localhost is used.
  ## If no port is specified, 6514 is used (RFC5425#section-4.1).
  ##   ex: server = "tcp://localhost:6514"
  ##       server = "udp://:6514"
  ##       server = "unix:///var/run/telegraf-syslog.sock"
  ## When using tcp, consider using 'tcp4' or 'tcp6' to force the usage of IPv4
  ## or IPV6 respectively. There are cases, where when not specified, a system
  ## may force an IPv4 mapped IPv6 address.
  server = "tcp://127.0.0.1:6514"

  ## Permission for unix sockets (only available on unix sockets)
  ## This setting may not be respected by some platforms. To safely restrict
  ## permissions it is recommended to place the socket into a previously
  ## created directory with the desired permissions.
  ##   ex: socket_mode = "777"
  # socket_mode = ""

  ## Maximum number of concurrent connections (only available on stream sockets like TCP)
  ## Zero means unlimited.
  # max_connections = 0

  ## Read timeout (only available on stream sockets like TCP)
  ## Zero means unlimited.
  # read_timeout = "0s"

  ## Optional TLS configuration (only available on stream sockets like TCP)
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key  = "/etc/telegraf/key.pem"
  ## Enables client authentication if set.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Maximum socket buffer size (in bytes when no unit specified)
  ## For stream sockets, once the buffer fills up, the sender will start
  ## backing up. For datagram sockets, once the buffer fills up, metrics will
  ## start dropping. Defaults to the OS default.
  # read_buffer_size = "64KiB"

  ## Period between keep alive probes (only applies to TCP sockets)
  ## Zero disables keep alive probes. Defaults to the OS configuration.
  # keep_alive_period = "5m"

  ## Content encoding for message payloads
  ## Can be set to "gzip" for compressed payloads or "identity" for no encoding.
  # content_encoding = "identity"

  ## Maximum size of decoded packet (in bytes when no unit specified)
  # max_decompression_size = "500MB"

  ## Framing technique used for messages transport
  ## Available settings are:
  ##   octet-counting  -- see RFC5425#section-4.3.1 and RFC6587#section-3.4.1
  ##   non-transparent -- see RFC6587#section-3.4.2
  # framing = "octet-counting"

  ## The trailer to be expected in case of non-transparent framing (default = "LF").
  ## Must be one of "LF", or "NUL".
  # trailer = "LF"

  ## Whether to parse in best effort mode or not (default = false).
  ## By default best effort parsing is off.
  # best_effort = false

  ## The RFC standard to use for message parsing
  ## By default RFC5424 is used. RFC3164 only supports UDP transport (no streaming support)
  ## Must be one of "RFC5424", or "RFC3164".
  # syslog_standard = "RFC5424"

  ## Character to prepend to SD-PARAMs (default = "_").
  ## A syslog message can contain multiple parameters and multiple identifiers within structured data section.
  ## Eg., [id1 name1="val1" name2="val2"][id2 name1="val1" nameA="valA"]
  ## For each combination a field is created.
  ## Its name is created concatenating identifier, sdparam_separator, and parameter name.
  # sdparam_separator = "_"

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

输入和输出集成示例

Syslog

  1. 集中式日志管理:使用 Syslog 插件将来自多台服务器的日志消息聚合到一个中央日志记录系统中。此设置可以通过收集来自不同来源的 syslog 数据,帮助监控整体系统健康状况、有效排除故障和维护审计跟踪。

  2. 实时警报:将 Syslog 插件与警报工具集成,以便在检测到特定日志模式或错误时触发实时通知。例如,如果日志中出现关键系统错误,则可以向运维团队发送警报,从而最大限度地减少停机时间并执行主动维护。

  3. 安全监控:通过捕获来自防火墙、入侵检测系统和其他安全设备的日志,利用 Syslog 插件进行安全监控。此日志记录功能增强了安全可见性,并通过分析捕获的 syslog 数据,帮助调查潜在的恶意活动。

  4. 应用程序性能跟踪:通过收集来自各种应用程序的日志,利用 Syslog 插件来监控应用程序性能。此集成有助于分析应用程序的行为和性能趋势,从而帮助优化应用程序流程并确保更流畅的运行。

IoTDB

  1. 实时物联网监控:利用 IoTDB 插件从各种物联网设备收集传感器数据,并将其保存在 Apache IoTDB 后端,从而方便地实时监控环境条件,如温度和湿度。此用例使组织能够分析随时间变化的趋势,并根据历史数据做出明智的决策,同时利用 IoTDB 的高效存储和查询功能。

  2. 智慧农业数据采集:使用 IoTDB 插件收集来自部署在田野中的智慧农业传感器的指标。通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以访问有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理水平。

  3. 能源消耗分析:利用 IoTDB 插件跟踪来自整个公用事业网络智能电表的能源消耗指标。此集成支持分析以识别使用高峰并预测未来的消耗模式,最终支持节能措施和改进的公用事业管理。

  4. 自动化工业设备监控:使用此插件收集来自制造工厂机械的运行指标,并将其存储在 IoTDB 中进行分析。此设置可以帮助识别效率低下、预测性维护需求和运行异常,从而确保最佳性能并最大限度地减少意外停机时间。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成