Syslog 和 Google BigQuery 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Syslog 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 借助 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Syslog 插件可以使用标准网络协议从各种来源收集 syslog 消息。 此功能对于需要有效监控和记录系统的环境至关重要。

Google BigQuery 插件允许 Telegraf 将指标写入 Google Cloud BigQuery,从而为遥测数据提供强大的数据分析功能。

集成详情

Syslog

Telegraf 的 Syslog 插件捕获通过各种协议(如 TCP、UDP 和 TLS)传输的 syslog 消息。 它同时支持 RFC 5424(较新的 syslog 协议)和较旧的 RFC 3164(BSD syslog 协议)。 此插件作为服务输入运行,有效地启动一个服务来监听传入的 syslog 消息。 与传统插件不同,服务输入可能无法与标准间隔设置或 CLI 选项(如 `--once`)一起使用。 它包括用于设置网络配置、套接字权限、消息处理和连接处理的选项。 此外,与 Rsyslog 的集成允许转发日志消息,使其成为实时收集和中继系统日志的强大工具,从而无缝集成到监控和日志记录系统中。

Google BigQuery

Telegraf 的 Google BigQuery 插件实现了与 Google Cloud 的 BigQuery 服务的无缝集成,BigQuery 服务是一个流行的数据仓库和分析平台。 此插件有助于将 Telegraf 收集的指标传输到 BigQuery 数据集中,从而使用户可以更轻松地从其遥测数据中执行分析并生成见解。 它需要通过服务帐户或用户凭据进行身份验证,并且旨在处理各种数据类型,确保用户在将其指标存储在 BigQuery 表中时可以保持其指标的完整性和准确性。 配置选项允许围绕数据集规范和处理指标进行自定义,包括管理指标名称中的连字符,BigQuery 的流式插入不支持连字符。 此插件对于利用 BigQuery 的可扩展性和强大的查询功能来分析大量监控数据的组织特别有用。

配置

Syslog

[[inputs.syslog]]
  ## Protocol, address and port to host the syslog receiver.
  ## If no host is specified, then localhost is used.
  ## If no port is specified, 6514 is used (RFC5425#section-4.1).
  ##   ex: server = "tcp://localhost:6514"
  ##       server = "udp://:6514"
  ##       server = "unix:///var/run/telegraf-syslog.sock"
  ## When using tcp, consider using 'tcp4' or 'tcp6' to force the usage of IPv4
  ## or IPV6 respectively. There are cases, where when not specified, a system
  ## may force an IPv4 mapped IPv6 address.
  server = "tcp://127.0.0.1:6514"

  ## Permission for unix sockets (only available on unix sockets)
  ## This setting may not be respected by some platforms. To safely restrict
  ## permissions it is recommended to place the socket into a previously
  ## created directory with the desired permissions.
  ##   ex: socket_mode = "777"
  # socket_mode = ""

  ## Maximum number of concurrent connections (only available on stream sockets like TCP)
  ## Zero means unlimited.
  # max_connections = 0

  ## Read timeout (only available on stream sockets like TCP)
  ## Zero means unlimited.
  # read_timeout = "0s"

  ## Optional TLS configuration (only available on stream sockets like TCP)
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key  = "/etc/telegraf/key.pem"
  ## Enables client authentication if set.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Maximum socket buffer size (in bytes when no unit specified)
  ## For stream sockets, once the buffer fills up, the sender will start
  ## backing up. For datagram sockets, once the buffer fills up, metrics will
  ## start dropping. Defaults to the OS default.
  # read_buffer_size = "64KiB"

  ## Period between keep alive probes (only applies to TCP sockets)
  ## Zero disables keep alive probes. Defaults to the OS configuration.
  # keep_alive_period = "5m"

  ## Content encoding for message payloads
  ## Can be set to "gzip" for compressed payloads or "identity" for no encoding.
  # content_encoding = "identity"

  ## Maximum size of decoded packet (in bytes when no unit specified)
  # max_decompression_size = "500MB"

  ## Framing technique used for messages transport
  ## Available settings are:
  ##   octet-counting  -- see RFC5425#section-4.3.1 and RFC6587#section-3.4.1
  ##   non-transparent -- see RFC6587#section-3.4.2
  # framing = "octet-counting"

  ## The trailer to be expected in case of non-transparent framing (default = "LF").
  ## Must be one of "LF", or "NUL".
  # trailer = "LF"

  ## Whether to parse in best effort mode or not (default = false).
  ## By default best effort parsing is off.
  # best_effort = false

  ## The RFC standard to use for message parsing
  ## By default RFC5424 is used. RFC3164 only supports UDP transport (no streaming support)
  ## Must be one of "RFC5424", or "RFC3164".
  # syslog_standard = "RFC5424"

  ## Character to prepend to SD-PARAMs (default = "_").
  ## A syslog message can contain multiple parameters and multiple identifiers within structured data section.
  ## Eg., [id1 name1="val1" name2="val2"][id2 name1="val1" nameA="valA"]
  ## For each combination a field is created.
  ## Its name is created concatenating identifier, sdparam_separator, and parameter name.
  # sdparam_separator = "_"

Google BigQuery

# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
  ## Credentials File
  credentials_file = "/path/to/service/account/key.json"

  ## Google Cloud Platform Project
  # project = ""

  ## The namespace for the metric descriptor
  dataset = "telegraf"

  ## Timeout for BigQuery operations.
  # timeout = "5s"

  ## Character to replace hyphens on Metric name
  # replace_hyphen_to = "_"

  ## Write all metrics in a single compact table
  # compact_table = ""
  

输入和输出集成示例

Syslog

  1. 集中日志管理:使用 Syslog 插件将来自多个服务器的日志消息聚合到中央日志记录系统中。 此设置可以通过从不同来源收集 syslog 数据来帮助监控整体系统运行状况、有效排除故障和维护审计跟踪。

  2. 实时警报:将 Syslog 插件与警报工具集成,以便在检测到特定日志模式或错误时触发实时通知。 例如,如果日志中出现关键系统错误,则可以向运维团队发送警报,从而最大限度地减少停机时间并执行主动维护。

  3. 安全监控:利用 Syslog 插件进行安全监控,方法是从防火墙、入侵检测系统和其他安全设备捕获日志。 此日志记录功能增强了安全可见性,并通过分析捕获的 syslog 数据帮助调查潜在的恶意活动。

  4. 应用程序性能跟踪:利用 Syslog 插件通过收集来自各种应用程序的日志来监控应用程序性能。 此集成有助于分析应用程序的行为和性能趋势,从而有助于优化应用程序流程并确保更顺畅的运行。

Google BigQuery

  1. 实时分析仪表板:利用 Google BigQuery 插件将实时指标馈送到 Google Cloud 上托管的自定义分析仪表板中。 此设置将允许团队实时可视化性能数据,从而深入了解系统运行状况和使用模式。 通过使用 BigQuery 的查询功能,用户可以轻松创建量身定制的报告和仪表板以满足其特定需求,从而增强决策过程。

  2. 成本管理和优化分析:利用该插件自动将来自各种服务的成本相关指标发送到 BigQuery。 分析此数据可以帮助企业识别不必要的开支并优化资源使用率。 通过在 BigQuery 中执行聚合和转换查询,组织可以创建准确的预测并有效地管理其云支出。

  3. 跨团队监控数据协作:使组织内不同的团队能够使用 BigQuery 共享其监控数据。 借助此 Telegraf 插件,团队可以将他们的指标推送到中央 BigQuery 实例,从而促进协作。 这种数据共享方法鼓励最佳实践和跨职能意识,从而共同改进系统性能和可靠性。

  4. 容量规划的历史分析:通过使用 BigQuery 插件,公司可以收集和存储对于容量规划至关重要的历史指标数据。 分析随时间变化的趋势可以帮助预测系统需求并主动扩展基础设施。 组织可以创建时序分析并识别为长期战略决策提供信息的模式。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 借助 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成