Suricata 和 AWS Timestream 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是实时大规模查询的推荐配置。 为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Suricata 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 一起扩展的时序平台。

查看入门方法

输入和输出集成概述

此插件报告 Suricata IDS/IPS 引擎的内部性能计数器,并处理传入数据以适应 Telegraf 的格式。

AWS Timestream Telegraf 插件使用户能够将指标直接发送到 Amazon 的 Timestream 服务,该服务专为时序数据管理而设计。 此插件为身份验证、数据组织和保留设置提供了各种配置选项。

集成详情

Suricata

Suricata 插件捕获并报告来自 Suricata IDS/IPS 引擎的内部性能指标,其中包括各种统计信息,例如流量、内存使用情况、正常运行时间以及流和警报的计数器。 此插件侦听来自 Suricata 的 JSON 格式的日志输出,从而可以解析数据并将其格式化以与 Telegraf 集成。 它作为服务输入插件运行,这意味着它主动等待来自 Suricata 的指标或事件,而不是按预定义的时间间隔收集指标。 该插件支持不同指标版本的配置,从而提高了灵活性和详细的数据收集能力。

AWS Timestream

此插件旨在高效地将指标写入 Amazon 的 Timestream 服务,Timestream 服务是一个针对物联网和运营应用程序优化的时序数据库。 借助此插件,Telegraf 可以发送从各种来源收集的数据,并支持身份验证、数据组织和保留管理的灵活配置。 它利用凭证链进行身份验证,允许使用各种方法,例如 Web 身份、假定的角色和共享配置文件。 用户可以定义指标在 Timestream 中的组织方式——是使用单个表还是多个表,以及控制磁存储和内存存储的保留期等各个方面。 一个关键功能是它能够处理多指标记录,从而实现高效的数据摄取并有助于减少多次写入的开销。 在错误处理方面,该插件包含用于解决数据写入期间与 AWS 错误相关的常见问题的机制,例如用于限制的重试逻辑以及根据需要创建表的功能。

配置

Suricata

[[inputs.suricata]]
  ## Source
  ## Data sink for Suricata stats log. This is expected to be a filename of a
  ## unix socket to be created for listening.
  # source = "/var/run/suricata-stats.sock"

  ## Delimiter
  ## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
  ## "detect_alert" when delimiter is "_".
  # delimiter = "_"

  ## Metric version
  ## Version 1 only collects stats and optionally will look for alerts if
  ## the configuration setting alerts is set to true.
  ## Version 2 parses any event type message by default and produced metrics
  ## under a single metric name using a tag to differentiate between event
  ## types. The timestamp for the message is applied to the generated metric.
  ## Additional tags and fields are included as well.
  # version = "1"

  ## Alerts
  ## In metric version 1, only status is captured by default, alerts must be
  ## turned on with this configuration option. This option does not apply for
  ## metric version 2.
  # alerts = false

AWS Timestream

[[outputs.timestream]]
  ## Amazon Region
  region = "us-east-1"

  ## Amazon Credentials
  ## Credentials are loaded in the following order:
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  #access_key = ""
  #secret_key = ""
  #token = ""
  #role_arn = ""
  #web_identity_token_file = ""
  #role_session_name = ""
  #profile = ""
  #shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Timestream database where the metrics will be inserted.
  ## The database must exist prior to starting Telegraf.
  database_name = "yourDatabaseNameHere"

  ## Specifies if the plugin should describe the Timestream database upon starting
  ## to validate if it has access necessary permissions, connection, etc., as a safety check.
  ## If the describe operation fails, the plugin will not start
  ## and therefore the Telegraf agent will not start.
  describe_database_on_start = false

  ## Specifies how the data is organized in Timestream.
  ## Valid values are: single-table, multi-table.
  ## When mapping_mode is set to single-table, all of the data is stored in a single table.
  ## When mapping_mode is set to multi-table, the data is organized and stored in multiple tables.
  ## The default is multi-table.
  mapping_mode = "multi-table"

  ## Specifies if the plugin should create the table, if the table does not exist.
  create_table_if_not_exists = true

  ## Specifies the Timestream table magnetic store retention period in days.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_magnetic_store_retention_period_in_days = 365

  ## Specifies the Timestream table memory store retention period in hours.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_memory_store_retention_period_in_hours = 24

  ## Specifies how the data is written into Timestream.
  ## Valid values are: true, false
  ## When use_multi_measure_records is set to true, all of the tags and fields are stored
  ## as a single row in a Timestream table.
  ## When use_multi_measure_record is set to false, Timestream stores each field in a
  ## separate table row, thereby storing the tags multiple times (once for each field).
  ## The recommended setting is true.
  ## The default is false.
  use_multi_measure_records = "false"

  ## Specifies the measure_name to use when sending multi-measure records.
  ## NOTE: This property is valid when use_multi_measure_records=true and mapping_mode=multi-table
  measure_name_for_multi_measure_records = "telegraf_measure"

  ## Specifies the name of the table to write data into
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_name = ""

  ## Specifies the name of dimension when all of the data is being stored in a single table
  ## and the measurement name is transformed into the dimension value
  ## (see Mapping data from Influx to Timestream for details)
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_dimension_name_for_telegraf_measurement_name = "namespace"

  ## Only valid and optional if create_table_if_not_exists = true
  ## Specifies the Timestream table tags.
  ## Check Timestream documentation for more details
  # create_table_tags = { "foo" = "bar", "environment" = "dev"}

  ## Specify the maximum number of parallel go routines to ingest/write data
  ## If not specified, defaulted to 1 go routines
  max_write_go_routines = 25

  ## Please see README.md to know how line protocol data is mapped to Timestream
  ##

输入和输出集成示例

Suricata

  1. 网络流量分析:利用 Suricata 插件跟踪有关网络入侵尝试和性能的详细指标,从而帮助进行实时威胁检测和响应。 通过可视化捕获的警报和流量统计信息,安全团队可以快速查明漏洞并降低风险。

  2. 性能监控仪表板:使用 Suricata Telegraf 插件指标创建一个仪表板,以监控 IDS/IPS 引擎的运行状况和性能。 此用例提供了内存使用情况、捕获的数据包和警报统计信息的概览,使团队能够保持最佳运行条件。

  3. 自动化安全报告:利用该插件生成有关警报统计信息和流量模式的定期报告,帮助安全分析师识别长期趋势并制定战略防御计划。 自动化报告还确保持续评估网络的安全性。

  4. 实时警报处理:将 Suricata 的警报指标集成到更广泛的事件响应自动化框架中。 通过结合来自 Suricata 插件的输入,组织可以开发用于警报的智能触发器和自动化响应工作流程,从而提高对潜在威胁的响应速度。

AWS Timestream

  1. 物联网数据指标:使用 Timestream 插件将来自物联网设备的实时指标发送到 Timestream,从而可以快速分析和可视化传感器数据。 通过将设备读数组织成时序格式,用户可以跟踪趋势、识别异常并根据设备性能简化运营决策。

  2. 应用程序性能监控:将 Timestream 与应用程序监控工具结合使用,以发送有关服务性能随时间变化的指标。 此集成使工程师能够对应用程序性能进行历史分析,将其与业务指标相关联,并根据随时间推移的使用模式优化资源分配。

  3. 自动化数据存档:配置 Timestream 插件以将数据写入 Timestream,同时管理保留期。 此设置可以自动化存档策略,确保根据预定义的条件保留旧数据。 这对于合规性和历史分析特别有用,使企业能够以最少的人工干预来维护其数据生命周期。

  4. 多应用程序指标聚合:利用 Timestream 插件将来自多个应用程序的指标聚合到 Timestream 中。 通过创建统一的性能指标数据库,组织可以获得跨各种服务的整体洞察力,从而提高对系统范围性能的可见性并促进跨应用程序故障排除。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 一起扩展的时序平台。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成