Suricata 和 Snowflake 集成

强大的性能和简单的集成,由 Telegraf 驱动,InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Suricata 和 InfluxDB

5B+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件报告 Suricata IDS/IPS 引擎的内部性能计数器,并处理传入数据以适应 Telegraf 的格式。

Telegraf 的 SQL 插件允许在 SQL 数据库中无缝存储指标。当配置为 Snowflake 时,它采用专门的 DSN 格式和动态表创建,以将指标映射到适当的模式。

集成详情

Suricata

Suricata 插件捕获并报告 Suricata IDS/IPS 引擎的内部性能指标,其中包括各种统计信息,例如流量、内存使用率、正常运行时间以及流和警报的计数器。此插件监听来自 Suricata 的 JSON 格式的日志输出,使其能够解析和格式化数据以与 Telegraf 集成。它作为服务输入插件运行,这意味着它主动等待来自 Suricata 的指标或事件,而不是以预定义的时间间隔收集指标。该插件支持不同指标版本的配置,从而增强了灵活性和详细的数据收集。

Snowflake

Telegraf 的 SQL 插件旨在通过基于传入数据创建表和列,从而动态地将指标写入 SQL 数据库。当配置为 Snowflake 时,它采用 gosnowflake 驱动程序,该驱动程序使用 DSN,DSN 以紧凑的格式封装凭据、帐户详细信息和数据库配置。这种设置允许自动生成表,其中每个指标都记录有精确的时间戳,从而确保详细的历史跟踪。尽管该集成被认为是实验性的,但它利用了 Snowflake 强大的数据仓库功能,使其适用于可扩展的、基于云的分析和报告解决方案。

配置

Suricata

[[inputs.suricata]]
  ## Source
  ## Data sink for Suricata stats log. This is expected to be a filename of a
  ## unix socket to be created for listening.
  # source = "/var/run/suricata-stats.sock"

  ## Delimiter
  ## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
  ## "detect_alert" when delimiter is "_".
  # delimiter = "_"

  ## Metric version
  ## Version 1 only collects stats and optionally will look for alerts if
  ## the configuration setting alerts is set to true.
  ## Version 2 parses any event type message by default and produced metrics
  ## under a single metric name using a tag to differentiate between event
  ## types. The timestamp for the message is applied to the generated metric.
  ## Additional tags and fields are included as well.
  # version = "1"

  ## Alerts
  ## In metric version 1, only status is captured by default, alerts must be
  ## turned on with this configuration option. This option does not apply for
  ## metric version 2.
  # alerts = false

Snowflake

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "snowflake"

  ## Data source name
  ## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
  ## Example DSN: "username:password@account/warehouse/db/schema"
  data_source_name = "username:password@account/warehouse/db/schema"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Suricata

  1. 网络流量分析:利用 Suricata 插件跟踪有关网络入侵尝试和性能的详细指标,帮助进行实时威胁检测和响应。通过可视化捕获的警报和流量统计信息,安全团队可以快速查明漏洞并降低风险。

  2. 性能监控仪表板:使用 Suricata Telegraf 插件指标创建一个仪表板,以监控 IDS/IPS 引擎的健康状况和性能。此用例概述了内存使用率、捕获的数据包和警报统计信息,使团队能够保持最佳运行状态。

  3. 自动化安全报告:利用该插件生成关于警报统计信息和流量模式的定期报告,帮助安全分析师识别长期趋势并制定战略防御计划。自动化报告还确保持续评估网络的安全态势。

  4. 实时警报处理:将 Suricata 的警报指标集成到更广泛的事件响应自动化框架中。通过整合来自 Suricata 插件的输入,组织可以开发智能触发器,用于警报和自动化响应工作流程,从而提高对潜在威胁的响应速度。

Snowflake

  1. 基于云的数据湖集成:利用该插件将来自各种来源的实时指标流式传输到 Snowflake 中,从而创建集中式数据湖。此集成支持云数据上的复杂分析和机器学习工作流程。

  2. 动态商业智能仪表板:利用该插件从传入指标自动生成表,并将它们馈送到 BI 工具中。这使企业能够创建动态仪表板,可视化性能趋势和运营洞察,而无需手动模式管理。

  3. 可扩展的物联网分析:部署该插件以将来自物联网设备的高频数据捕获到 Snowflake 中。此用例有助于传感器数据的聚合和分析,从而实现大规模的预测性维护和实时监控。

  4. 用于合规性的历史趋势分析:使用该插件在 Snowflake 中记录和存档详细的指标数据,然后可以查询这些数据以进行长期趋势分析和合规性报告。这种设置确保组织可以维护强大的审计跟踪,并在需要时执行取证分析。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成