Suricata 和 MongoDB 集成

强大的性能和便捷的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是大规模实时查询的推荐配置。为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Suricata 和 InfluxDB

50亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

该插件报告 Suricata IDS/IPS 引擎的内部性能计数器,并处理传入数据以适应 Telegraf 的格式。

MongoDB Telegraf 插件使用户能够将指标发送到 MongoDB 数据库,并自动管理时序集合。

集成详情

Suricata

Suricata 插件捕获并报告来自 Suricata IDS/IPS 引擎的内部性能指标,其中包括各种统计信息,例如流量、内存使用情况、正常运行时间以及流和警报的计数器。该插件监听来自 Suricata 的 JSON 格式的日志输出,使其能够解析和格式化数据,以便与 Telegraf 集成。它作为服务输入插件运行,这意味着它主动等待来自 Suricata 的指标或事件,而不是按预定义的时间间隔收集指标。该插件支持不同指标版本的配置,从而实现增强的灵活性和详细的数据收集。

MongoDB

该插件将指标发送到 MongoDB,并与其时序功能无缝集成,从而可以在时序集合尚不存在时自动创建为时序集合。它需要 MongoDB 5.0 或更高版本才能使用时序集合功能,这对于高效存储和查询基于时间的数据至关重要。该插件通过确保所有相关指标都正确存储和组织在 MongoDB 中,从而增强了监控功能,使用户能够利用 MongoDB 强大的查询和聚合功能进行时序分析。

配置

Suricata

[[inputs.suricata]]
  ## Source
  ## Data sink for Suricata stats log. This is expected to be a filename of a
  ## unix socket to be created for listening.
  # source = "/var/run/suricata-stats.sock"

  ## Delimiter
  ## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
  ## "detect_alert" when delimiter is "_".
  # delimiter = "_"

  ## Metric version
  ## Version 1 only collects stats and optionally will look for alerts if
  ## the configuration setting alerts is set to true.
  ## Version 2 parses any event type message by default and produced metrics
  ## under a single metric name using a tag to differentiate between event
  ## types. The timestamp for the message is applied to the generated metric.
  ## Additional tags and fields are included as well.
  # version = "1"

  ## Alerts
  ## In metric version 1, only status is captured by default, alerts must be
  ## turned on with this configuration option. This option does not apply for
  ## metric version 2.
  # alerts = false

MongoDB

[[outputs.mongodb]]
              # connection string examples for mongodb
              dsn = "mongodb://localhost:27017"
              # dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"

              # overrides serverSelectionTimeoutMS in dsn if set
              # timeout = "30s"

              # default authentication, optional
              # authentication = "NONE"

              # for SCRAM-SHA-256 authentication
              # authentication = "SCRAM"
              # username = "root"
              # password = "***"

              # for x509 certificate authentication
              # authentication = "X509"
              # tls_ca = "ca.pem"
              # tls_key = "client.pem"
              # # tls_key_pwd = "changeme" # required for encrypted tls_key
              # insecure_skip_verify = false

              # database to store measurements and time series collections
              # database = "telegraf"

              # granularity can be seconds, minutes, or hours.
              # configuring this value will be based on your input collection frequency.
              # see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
              # granularity = "seconds"

              # optionally set a TTL to automatically expire documents from the measurement collections.
              # ttl = "360h"

输入和输出集成示例

Suricata

  1. 网络流量分析:利用 Suricata 插件跟踪有关网络入侵尝试和性能的详细指标,帮助实时威胁检测和响应。通过可视化捕获的警报和流量统计信息,安全团队可以快速查明漏洞并降低风险。

  2. 性能监控仪表板:使用 Suricata Telegraf 插件指标创建一个仪表板,以监控 IDS/IPS 引擎的健康状况和性能。此用例概述了内存使用情况、捕获的数据包和警报统计信息,使团队能够保持最佳运行状态。

  3. 自动化安全报告:利用该插件生成关于警报统计信息和流量模式的定期报告,帮助安全分析师识别长期趋势并制定战略防御计划。自动化报告还确保持续评估网络的安全性。

  4. 实时警报处理:将 Suricata 的警报指标集成到更广泛的事件响应自动化框架中。通过结合来自 Suricata 插件的输入,组织可以开发智能触发器,用于警报和自动化响应工作流程,从而提高对潜在威胁的反应速度。

MongoDB

  1. 动态日志记录到 MongoDB 以用于物联网设备:利用此插件实时收集和存储来自大量物联网设备的指标。通过将设备日志直接发送到 MongoDB,您可以创建一个集中式数据库,方便访问和查询健康指标和性能数据,从而根据历史趋势实现主动维护和故障排除。

  2. Web 流量的时序分析:使用 MongoDB Telegraf 插件收集和分析随时间变化的 Web 流量指标。此应用程序可以帮助您了解高峰使用时间、用户交互和行为模式,从而指导营销策略和基础设施扩展决策,以改善用户体验。

  3. 自动化监控和警报系统:将 MongoDB 插件集成到跟踪应用程序性能指标的自动化监控系统中。借助时序集合,您可以根据特定阈值设置警报,使您的团队能够在潜在问题影响用户之前做出响应。这种主动管理可以提高服务可靠性和整体性能。

  4. 指标存储中的数据保留和 TTL 管理:利用 MongoDB 集合中文档的 TTL 功能自动过期过时的指标。这对于仅最近的性能数据相关的环境特别有用,可以防止您的 MongoDB 数据库被旧指标填满,并确保高效的数据管理。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

该插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成