Suricata 和 Microsoft SQL Server 集成

强大的性能和简易的集成,由 InfluxData 构建的开源数据连接器 Telegraf 驱动。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Suricata 和 InfluxDB

5B+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件报告 Suricata IDS/IPS 引擎的内部性能计数器,并处理传入数据以适应 Telegraf 的格式。

Telegraf 的 SQL 插件有助于将指标存储在 SQL 数据库中。当配置为 Microsoft SQL Server 时,它支持特定的 DSN 格式和模式要求,从而实现与 SQL Server 的无缝集成。

集成详情

Suricata

Suricata 插件捕获并报告 Suricata IDS/IPS 引擎的内部性能指标,其中包括各种统计信息,例如流量、内存使用率、正常运行时间以及流和警报的计数器。此插件侦听来自 Suricata 的 JSON 格式日志输出,使其能够解析和格式化数据以与 Telegraf 集成。它作为服务输入插件运行,这意味着它主动等待来自 Suricata 的指标或事件,而不是以预定义的间隔收集指标。该插件支持不同指标版本的配置,从而增强了灵活性和详细的数据收集。

Microsoft SQL Server

Telegraf 的 Microsoft SQL Server SQL 输出插件旨在通过动态创建与传入数据结构匹配的表和列来捕获和存储指标数据。此集成利用 go-mssqldb 驱动程序,该驱动程序通过包含服务器、端口和数据库详细信息的 DSN 遵循 SQL Server 连接协议。尽管由于单元测试有限,该驱动程序被认为是实验性的,但它为动态模式生成和数据插入提供了强大的支持,从而可以详细记录系统性能的时间戳记录。尽管其状态为实验性,但这种灵活性使其成为需要可靠且精细的指标日志记录的环境的宝贵工具。

配置

Suricata

[[inputs.suricata]]
  ## Source
  ## Data sink for Suricata stats log. This is expected to be a filename of a
  ## unix socket to be created for listening.
  # source = "/var/run/suricata-stats.sock"

  ## Delimiter
  ## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
  ## "detect_alert" when delimiter is "_".
  # delimiter = "_"

  ## Metric version
  ## Version 1 only collects stats and optionally will look for alerts if
  ## the configuration setting alerts is set to true.
  ## Version 2 parses any event type message by default and produced metrics
  ## under a single metric name using a tag to differentiate between event
  ## types. The timestamp for the message is applied to the generated metric.
  ## Additional tags and fields are included as well.
  # version = "1"

  ## Alerts
  ## In metric version 1, only status is captured by default, alerts must be
  ## turned on with this configuration option. This option does not apply for
  ## metric version 2.
  # alerts = false

Microsoft SQL Server

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "mssql"

  ## Data source name
  ## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
  ## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
  data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## You can customize the mapping if needed.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Suricata

  1. 网络流量分析:利用 Suricata 插件跟踪有关网络入侵尝试和性能的详细指标,帮助实时威胁检测和响应。通过可视化捕获的警报和流统计信息,安全团队可以快速查明漏洞并降低风险。

  2. 性能监控仪表板:使用 Suricata Telegraf 插件指标创建仪表板,以监控 IDS/IPS 引擎的健康状况和性能。此用例提供了内存使用率、捕获的数据包和警报统计信息的概览,使团队能够保持最佳运行状态。

  3. 自动化安全报告:利用该插件生成有关警报统计信息和流量模式的定期报告,帮助安全分析师识别长期趋势并制定战略防御计划。自动化报告还确保持续评估网络的安全态势。

  4. 实时警报处理:将 Suricata 的警报指标集成到更广泛的事件响应自动化框架中。通过结合来自 Suricata 插件的输入,组织可以为警报和自动化响应工作流程开发智能触发器,从而提高对潜在威胁的反应时间。

Microsoft SQL Server

  1. 企业应用程序监控:利用该插件捕获从 SQL Server 上运行的企业应用程序的详细性能指标。此设置允许 IT 团队分析系统性能、跟踪事务时间并识别跨复杂多层环境的瓶颈。

  2. 动态基础设施审计:部署该插件以创建 SQL Server 中基础设施变更和性能指标的动态审计日志。此用例非常适合需要实时监控和历史分析系统性能以进行合规性和优化的组织。

  3. 自动化性能基准测试:使用该插件持续记录和分析 SQL Server 数据库的性能指标。这实现了自动化基准测试,将历史数据与当前性能进行比较,有助于快速识别服务中的异常或降级。

  4. 集成 DevOps 仪表板:将该插件与 DevOps 监控工具集成,以将来自 SQL Server 的实时指标馈送到集中式仪表板。这提供了应用程序健康状况的整体视图,使团队能够将 SQL Server 性能与应用程序级事件相关联,从而更快地进行故障排除和主动维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成