Suricata 和 Azure 数据资源管理器集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Suricata 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。借助 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件报告 Suricata IDS/IPS 引擎的内部性能计数器,并处理传入数据以适应 Telegraf 的格式。

Azure 数据资源管理器插件允许指标收集与 Azure 数据资源管理器集成,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详情

Suricata

Suricata 插件捕获并报告来自 Suricata IDS/IPS 引擎的内部性能指标,其中包括各种统计信息,如流量、内存使用情况、正常运行时间以及流和警报的计数器。此插件侦听来自 Suricata 的 JSON 格式日志输出,使其能够解析数据并格式化数据以与 Telegraf 集成。它作为服务输入插件运行,这意味着它主动等待来自 Suricata 的指标或事件,而不是按预定义的时间间隔收集指标。该插件支持不同指标版本的配置,从而提高了灵活性和详细的数据收集能力。

Azure 数据资源管理器

Azure 数据资源管理器插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时间序列数据写入 Azure 数据资源管理器、Azure Synapse 和 Fabric 中的实时分析。此集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure 数据资源管理器针对对大量不同数据类型进行分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其需求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限的灵活性。这支持现代应用程序的可扩展且安全的监控设置,这些应用程序利用云服务。

配置

Suricata

[[inputs.suricata]]
  ## Source
  ## Data sink for Suricata stats log. This is expected to be a filename of a
  ## unix socket to be created for listening.
  # source = "/var/run/suricata-stats.sock"

  ## Delimiter
  ## Used for flattening field keys, e.g. subitem "alert" of "detect" becomes
  ## "detect_alert" when delimiter is "_".
  # delimiter = "_"

  ## Metric version
  ## Version 1 only collects stats and optionally will look for alerts if
  ## the configuration setting alerts is set to true.
  ## Version 2 parses any event type message by default and produced metrics
  ## under a single metric name using a tag to differentiate between event
  ## types. The timestamp for the message is applied to the generated metric.
  ## Additional tags and fields are included as well.
  # version = "1"

  ## Alerts
  ## In metric version 1, only status is captured by default, alerts must be
  ## turned on with this configuration option. This option does not apply for
  ## metric version 2.
  # alerts = false

Azure 数据资源管理器

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

Suricata

  1. 网络流量分析:利用 Suricata 插件跟踪有关网络入侵尝试和性能的详细指标,帮助进行实时威胁检测和响应。通过可视化捕获的警报和流统计信息,安全团队可以快速查明漏洞并降低风险。

  2. 性能监控仪表板:使用 Suricata Telegraf 插件指标创建仪表板,以监控 IDS/IPS 引擎的健康状况和性能。此用例提供了内存使用情况、捕获的数据包和警报统计信息的概览,使团队能够维持最佳运行条件。

  3. 自动化安全报告:利用该插件生成有关警报统计信息和流量模式的定期报告,帮助安全分析师识别长期趋势并制定战略防御计划。自动化报告还确保持续评估网络的安全性态势。

  4. 实时警报处理:将 Suricata 的警报指标集成到更广泛的事件响应自动化框架中。通过整合来自 Suricata 插件的输入,组织可以为警报和自动化响应工作流程开发智能触发器,从而提高对潜在威胁的反应速度。

Azure 数据资源管理器

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure 数据资源管理器中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并优化系统健康状况,而不会出现延迟。

  2. 集中式日志管理:利用 Azure 数据资源管理器来整合来自多个应用程序和服务的日志。通过使用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中提取见解。

  3. 数据驱动的警报系统:通过根据通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显著减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure 数据资源管理器的数据,组织可以执行大规模分析并准备数据以输入到机器学习模型中。此插件支持构建可以随后用于预测分析的数据结构,从而增强决策能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。借助 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成