StatsD 和 PostgreSQL 集成

强大的性能和简易的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 StatsD 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

StatsD 输入插件通过在后台运行监听器服务来捕获来自 StatsD 服务器的指标,从而实现全面的性能监控和指标聚合。

Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库模式。

集成详情

StatsD

StatsD 输入插件旨在通过在 Telegraf 激活时运行后台 StatsD 监听器服务,从 StatsD 服务器收集指标。此插件利用原始 Etsy 实现建立的 StatsD 消息格式,该格式允许各种类型的指标,包括 gauges(计量器)、counters(计数器)、sets(集合)、timings(计时)、histograms(直方图)和 distributions(分布)。StatsD 插件的功能扩展到解析标签,并通过适应 InfluxDB 标签系统的功能扩展标准协议。它可以处理通过不同协议(UDP 或 TCP)发送的消息,有效管理多个指标,并为最佳指标处理提供高级配置,例如百分位数计算和数据转换模板。这种灵活性使用户能够全面跟踪应用程序性能,使其成为强大监控设置的必备工具。

PostgreSQL

PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容数据库,通过自动更新缺失的列,为模式管理提供强大的支持。该插件旨在促进与监控解决方案的集成,允许用户高效地存储和管理时间序列数据。它为连接设置、并发和错误处理提供可配置选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展支持无符号整数数据类型。

配置

StatsD

[[inputs.statsd]]
  ## Protocol, must be "tcp", "udp4", "udp6" or "udp" (default=udp)
  protocol = "udp"

  ## MaxTCPConnection - applicable when protocol is set to tcp (default=250)
  max_tcp_connections = 250

  ## Enable TCP keep alive probes (default=false)
  tcp_keep_alive = false

  ## Specifies the keep-alive period for an active network connection.
  ## Only applies to TCP sockets and will be ignored if tcp_keep_alive is false.
  ## Defaults to the OS configuration.
  # tcp_keep_alive_period = "2h"

  ## Address and port to host UDP listener on
  service_address = ":8125"

  ## The following configuration options control when telegraf clears it's cache
  ## of previous values. If set to false, then telegraf will only clear it's
  ## cache when the daemon is restarted.
  ## Reset gauges every interval (default=true)
  delete_gauges = true
  ## Reset counters every interval (default=true)
  delete_counters = true
  ## Reset sets every interval (default=true)
  delete_sets = true
  ## Reset timings & histograms every interval (default=true)
  delete_timings = true

  ## Enable aggregation temporality adds temporality=delta or temporality=commulative tag, and
  ## start_time field, which adds the start time of the metric accumulation.
  ## You should use this when using OpenTelemetry output.
  # enable_aggregation_temporality = false

  ## Percentiles to calculate for timing & histogram stats.
  percentiles = [50.0, 90.0, 99.0, 99.9, 99.95, 100.0]

  ## separator to use between elements of a statsd metric
  metric_separator = "_"

  ## Parses tags in the datadog statsd format
  ## http://docs.datadoghq.com/guides/dogstatsd/
  ## deprecated in 1.10; use datadog_extensions option instead
  parse_data_dog_tags = false

  ## Parses extensions to statsd in the datadog statsd format
  ## currently supports metrics and datadog tags.
  ## http://docs.datadoghq.com/guides/dogstatsd/
  datadog_extensions = false

  ## Parses distributions metric as specified in the datadog statsd format
  ## https://docs.datadoghq.com/developers/metrics/types/?tab=distribution#definition
  datadog_distributions = false

  ## Keep or drop the container id as tag. Included as optional field
  ## in DogStatsD protocol v1.2 if source is running in Kubernetes
  ## https://docs.datadoghq.com/developers/dogstatsd/datagram_shell/?tab=metrics#dogstatsd-protocol-v12
  datadog_keep_container_tag = false

  ## Statsd data translation templates, more info can be read here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/TEMPLATE_PATTERN.md
  # templates = [
  #     "cpu.* measurement*"
  # ]

  ## Number of UDP messages allowed to queue up, once filled,
  ## the statsd server will start dropping packets
  allowed_pending_messages = 10000

  ## Number of worker threads used to parse the incoming messages.
  # number_workers_threads = 5

  ## Number of timing/histogram values to track per-measurement in the
  ## calculation of percentiles. Raising this limit increases the accuracy
  ## of percentiles but also increases the memory usage and cpu time.
  percentile_limit = 1000

  ## Maximum socket buffer size in bytes, once the buffer fills up, metrics
  ## will start dropping.  Defaults to the OS default.
  # read_buffer_size = 65535

  ## Max duration (TTL) for each metric to stay cached/reported without being updated.
  # max_ttl = "10h"

  ## Sanitize name method
  ## By default, telegraf will pass names directly as they are received.
  ## However, upstream statsd now does sanitization of names which can be
  ## enabled by using the "upstream" method option. This option will a) replace
  ## white space with '_', replace '/' with '-', and remove characters not
  ## matching 'a-zA-Z_\-0-9\.;='.
  #sanitize_name_method = ""

  ## Replace dots (.) with underscore (_) and dashes (-) with
  ## double underscore (__) in metric names.
  # convert_names = false

  ## Convert all numeric counters to float
  ## Enabling this would ensure that both counters and guages are both emitted
  ## as floats.
  # float_counters = false

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

StatsD

  1. 实时应用程序性能监控:利用 StatsD 输入插件实时监控应用程序性能指标。通过配置您的应用程序将各种指标发送到 StatsD 服务器,团队可以利用此插件动态分析性能瓶颈、跟踪用户活动并确保资源优化。历史指标和实时指标的结合有助于主动排除故障,并提高问题解决过程的响应速度。

  2. 跟踪 Web 应用程序中的用户参与度指标:使用 StatsD 插件收集用户参与度统计信息,例如页面浏览量、点击事件和互动时间。通过将这些指标发送到 StatsD 服务器,企业可以获得对用户行为的宝贵见解,使他们能够根据定量反馈做出数据驱动的决策,以改善用户体验和界面设计。这可以显著提高营销策略和产品开发工作的有效性。

  3. 基础设施健康监控:部署 StatsD 插件,通过跟踪资源利用率、服务器响应时间和网络性能等指标来监控服务器基础设施的健康状况。通过这种设置,DevOps 团队可以详细了解系统性能,有效地在问题升级之前预测问题。这使得能够以主动的方式进行基础设施管理,最大限度地减少停机时间并确保最佳的服务交付。

  4. 创建全面的服务仪表板:将 StatsD 与可视化工具集成,以创建反映整个架构中服务状态和健康状况的全面仪表板。例如,结合通过 StatsD 记录的来自多个服务的数据,可以将原始指标转换为可操作的见解,展示系统性能随时间变化的趋势。此功能使利益相关者能够保持监督,并根据可视化的数据集推动决策,从而提高整体运营透明度。

PostgreSQL

  1. 使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而可以使用复杂查询进行实时分析。这种设置可以帮助数据科学家和分析师发现模式和趋势,因为他们可以在多个表之间操作关系数据,同时利用 PostgreSQL 强大的查询优化功能。具体而言,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常隐藏在嵌入式系统中的见解。

  2. 与 TimescaleDB 集成以进行时间序列数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效地处理和分析时间序列数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。此集成允许用户对大量时间序列数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,从而确保指标分析的可靠性和效率。

  3. 数据版本控制和历史分析:实施使用 PostgreSQL 插件的策略,以维护指标的不同版本。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而轻松进行历史分析。这种方法不仅提供了对数据演变的见解,还有助于遵守数据保留策略,确保数据集的历史完整性保持不变。

  4. 用于不断变化的指标的动态模式管理:使用插件的模板功能创建动态变化的模式,以响应指标变化。此用例允许组织在指标演变时调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷数据管理实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会变得更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成