StatsD 和 OpenSearch 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑StatsD 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

StatsD 输入插件通过在后台运行侦听器服务来捕获来自 StatsD 服务器的指标,从而实现全面的性能监控和指标聚合。

OpenSearch 输出插件允许用户使用 HTTP 将指标直接发送到 OpenSearch 实例,从而促进 OpenSearch 生态系统内有效的数据管理和分析。

集成详情

StatsD

StatsD 输入插件旨在通过在 Telegraf 处于活动状态时运行后台 StatsD 侦听器服务来收集来自 StatsD 服务器的指标。此插件利用原始 Etsy 实现建立的 StatsD 消息格式,该格式允许各种类型的指标,包括计量器、计数器、集合、计时、直方图和分布。 StatsD 插件的功能扩展到解析标签,并使用适应 InfluxDB 标签系统的功能扩展标准协议。它可以处理通过不同协议(UDP 或 TCP)发送的消息,有效管理多个指标,并提供用于优化指标处理的高级配置,例如百分位数计算和数据转换模板。这种灵活性使用户能够全面跟踪应用程序性能,使其成为强大监控设置的重要工具。

OpenSearch

OpenSearch Telegraf 插件通过 HTTP 与 OpenSearch 数据库集成,从而实现指标的简化收集和存储。作为专为 2.x 及更高版本的 OpenSearch 版本设计的强大工具,该插件在提供强大功能的同时,还通过原始 Elasticsearch 插件提供与 1.x 的兼容性。此插件有助于在 OpenSearch 中创建和管理索引,自动管理模板并确保数据结构化以便于分析。该插件支持各种配置选项,例如索引名称、身份验证、运行状况检查和值处理,使其能够根据不同的操作要求进行定制。其功能使其对于希望利用 OpenSearch 的强大功能进行指标存储和查询的组织至关重要。

配置

StatsD

[[inputs.statsd]]
  ## Protocol, must be "tcp", "udp4", "udp6" or "udp" (default=udp)
  protocol = "udp"

  ## MaxTCPConnection - applicable when protocol is set to tcp (default=250)
  max_tcp_connections = 250

  ## Enable TCP keep alive probes (default=false)
  tcp_keep_alive = false

  ## Specifies the keep-alive period for an active network connection.
  ## Only applies to TCP sockets and will be ignored if tcp_keep_alive is false.
  ## Defaults to the OS configuration.
  # tcp_keep_alive_period = "2h"

  ## Address and port to host UDP listener on
  service_address = ":8125"

  ## The following configuration options control when telegraf clears it's cache
  ## of previous values. If set to false, then telegraf will only clear it's
  ## cache when the daemon is restarted.
  ## Reset gauges every interval (default=true)
  delete_gauges = true
  ## Reset counters every interval (default=true)
  delete_counters = true
  ## Reset sets every interval (default=true)
  delete_sets = true
  ## Reset timings & histograms every interval (default=true)
  delete_timings = true

  ## Enable aggregation temporality adds temporality=delta or temporality=commulative tag, and
  ## start_time field, which adds the start time of the metric accumulation.
  ## You should use this when using OpenTelemetry output.
  # enable_aggregation_temporality = false

  ## Percentiles to calculate for timing & histogram stats.
  percentiles = [50.0, 90.0, 99.0, 99.9, 99.95, 100.0]

  ## separator to use between elements of a statsd metric
  metric_separator = "_"

  ## Parses tags in the datadog statsd format
  ## http://docs.datadoghq.com/guides/dogstatsd/
  ## deprecated in 1.10; use datadog_extensions option instead
  parse_data_dog_tags = false

  ## Parses extensions to statsd in the datadog statsd format
  ## currently supports metrics and datadog tags.
  ## http://docs.datadoghq.com/guides/dogstatsd/
  datadog_extensions = false

  ## Parses distributions metric as specified in the datadog statsd format
  ## https://docs.datadoghq.com/developers/metrics/types/?tab=distribution#definition
  datadog_distributions = false

  ## Keep or drop the container id as tag. Included as optional field
  ## in DogStatsD protocol v1.2 if source is running in Kubernetes
  ## https://docs.datadoghq.com/developers/dogstatsd/datagram_shell/?tab=metrics#dogstatsd-protocol-v12
  datadog_keep_container_tag = false

  ## Statsd data translation templates, more info can be read here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/TEMPLATE_PATTERN.md
  # templates = [
  #     "cpu.* measurement*"
  # ]

  ## Number of UDP messages allowed to queue up, once filled,
  ## the statsd server will start dropping packets
  allowed_pending_messages = 10000

  ## Number of worker threads used to parse the incoming messages.
  # number_workers_threads = 5

  ## Number of timing/histogram values to track per-measurement in the
  ## calculation of percentiles. Raising this limit increases the accuracy
  ## of percentiles but also increases the memory usage and cpu time.
  percentile_limit = 1000

  ## Maximum socket buffer size in bytes, once the buffer fills up, metrics
  ## will start dropping.  Defaults to the OS default.
  # read_buffer_size = 65535

  ## Max duration (TTL) for each metric to stay cached/reported without being updated.
  # max_ttl = "10h"

  ## Sanitize name method
  ## By default, telegraf will pass names directly as they are received.
  ## However, upstream statsd now does sanitization of names which can be
  ## enabled by using the "upstream" method option. This option will a) replace
  ## white space with '_', replace '/' with '-', and remove characters not
  ## matching 'a-zA-Z_\-0-9\.;='.
  #sanitize_name_method = ""

  ## Replace dots (.) with underscore (_) and dashes (-) with
  ## double underscore (__) in metric names.
  # convert_names = false

  ## Convert all numeric counters to float
  ## Enabling this would ensure that both counters and guages are both emitted
  ## as floats.
  # float_counters = false

OpenSearch

[[outputs.opensearch]]
  ## URLs
  ## The full HTTP endpoint URL for your OpenSearch instance. Multiple URLs can
  ## be specified as part of the same cluster, but only one URLs is used to
  ## write during each interval.
  urls = ["http://node1.os.example.com:9200"]

  ## Index Name
  ## Target index name for metrics (OpenSearch will create if it not exists).
  ## This is a Golang template (see https://pkg.go.dev/text/template)
  ## You can also specify
  ## metric name (`{{.Name}}`), tag value (`{{.Tag "tag_name"}}`), field value (`{{.Field "field_name"}}`)
  ## If the tag does not exist, the default tag value will be empty string "".
  ## the timestamp (`{{.Time.Format "xxxxxxxxx"}}`).
  ## For example: "telegraf-{{.Time.Format \"2006-01-02\"}}-{{.Tag \"host\"}}" would set it to telegraf-2023-07-27-HostName
  index_name = ""

  ## Timeout
  ## OpenSearch client timeout
  # timeout = "5s"

  ## Sniffer
  ## Set to true to ask OpenSearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  # enable_sniffer = false

  ## GZIP Compression
  ## Set to true to enable gzip compression
  # enable_gzip = false

  ## Health Check Interval
  ## Set the interval to check if the OpenSearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  # health_check_interval = "10s"

  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  # username = ""
  # password = ""
  ## HTTP bearer token authentication details
  # auth_bearer_token = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Manage templates
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  # manage_template = true

  ## Template Name
  ## The template name used for telegraf indexes
  # template_name = "telegraf"

  ## Overwrite Templates
  ## Set to true if you want telegraf to overwrite an existing template
  # overwrite_template = false

  ## Document ID
  ## If set to true a unique ID hash will be sent as
  ## sha256(concat(timestamp,measurement,series-hash)) string. It will enable
  ## data resend and update metric points avoiding duplicated metrics with
  ## different id's
  # force_document_id = false

  ## Value Handling
  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error
  ##               if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"

  ## Pipeline Name
  ## Additionally, you can specify a tag name using the notation (`{{.Tag "tag_name"}}`)
  ## which will be used as the pipeline name (e.g. "{{.Tag \"os_pipeline\"}}").
  ## If the tag does not exist, the default pipeline will be used as the pipeline.
  ## If no default pipeline is set, no pipeline is used for the metric.
  # default_pipeline = ""

输入和输出集成示例

StatsD

  1. 实时应用程序性能监控:利用 StatsD 输入插件实时监控应用程序性能指标。通过配置您的应用程序以将各种指标发送到 StatsD 服务器,团队可以利用此插件动态分析性能瓶颈、跟踪用户活动并确保资源优化。历史指标和实时指标的结合可以实现主动故障排除,并提高问题解决流程的响应速度。

  2. 跟踪 Web 应用程序中的用户参与度指标:使用 StatsD 插件收集用户参与度统计信息,例如页面浏览量、点击事件和互动时间。通过将这些指标发送到 StatsD 服务器,企业可以获得有关用户行为的宝贵见解,从而使他们能够根据定量反馈做出数据驱动的决策,以改善用户体验和界面设计。这可以显着提高营销策略和产品开发工作的有效性。

  3. 基础设施运行状况监控:部署 StatsD 插件以监控服务器基础设施的运行状况,方法是跟踪资源利用率、服务器响应时间和网络性能等指标。通过这种设置,DevOps 团队可以详细了解系统性能,有效地在问题升级之前预测问题。这使基础设施管理能够采取主动方法,最大限度地减少停机时间并确保最佳服务交付。

  4. 创建全面的服务仪表板:将 StatsD 与可视化工具集成,以创建全面的仪表板,反映整个架构中服务的状态和运行状况。例如,组合通过 StatsD 记录的来自多个服务的数据可以将原始指标转换为可操作的见解,从而展示系统性能随时间变化的趋势。这种能力使利益干系人能够保持监督并根据可视化的数据集推动决策,从而提高整体运营透明度。

OpenSearch

  1. 时间序列数据的动态索引:利用 OpenSearch Telegraf 插件为时间序列指标动态创建索引,确保数据以有利于基于时间的查询的有序方式存储。通过使用 Go 模板定义索引模式,用户可以利用该插件创建每日或每月索引,这可以大大简化数据管理和长期检索,从而提高分析性能。

  2. 多租户应用程序的集中式日志记录:在多租户应用程序中实施 OpenSearch 插件,其中每个租户的日志都发送到单独的索引。这使得可以针对每个租户进行有针对性的分析和监控,同时保持数据隔离。通过利用索引名称模板功能,用户可以自动创建租户特定的索引,这不仅简化了流程,还增强了租户数据的安全性和可访问性。

  3. 与机器学习集成以进行异常检测:将 OpenSearch 插件与机器学习工具结合使用,以自动检测指标数据中的异常。通过配置插件以将实时指标发送到 OpenSearch,用户可以将机器学习模型应用于传入的数据流,以识别异常值或异常模式,从而促进主动监控和快速补救措施。

  4. 使用 OpenSearch 增强监控仪表板:使用从 OpenSearch 收集的指标创建实时仪表板,以提供对系统性能的见解。通过将指标馈送到 OpenSearch,组织可以利用 OpenSearch Dashboards 可视化关键绩效指标,使运营团队能够快速评估运行状况和性能,并做出数据驱动的决策。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成