Google Cloud Stackdriver 和 SQLite 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Stackdriver 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,这是排名第一的旨在与 Telegraf 协同扩展的时间序列平台。

查看入门方法

输入和输出集成概述

此插件可以通过 Stackdriver Monitoring API 从 Google Cloud 服务收集监控数据。 它旨在帮助用户通过收集相关指标来监控其云基础设施的性能和健康状况。

Telegraf 的 SQL 输出插件通过为每种指标类型动态创建表,将指标存储在 SQL 数据库中。 当配置为 SQLite 时,它利用基于文件的 DSN 和为轻量级嵌入式数据库使用量身定制的最小 SQL 模式。

集成详情

Google Cloud Stackdriver

Stackdriver Telegraf 插件允许用户使用 Cloud Monitoring API v3 从 Google Cloud Monitoring 查询时间序列数据。 通过此插件,用户可以轻松地将 Google Cloud 监控指标集成到其监控堆栈中。 此 API 提供了有关 Google Cloud 中运行的资源和应用程序的丰富见解,包括性能、正常运行时间和运营指标。 该插件支持各种配置选项来过滤和优化检索到的数据,使用户能够根据其特定需求自定义其监控设置。 这种集成有助于更顺畅地维护云资源的健康和性能,并协助团队根据历史和当前性能统计数据做出数据驱动的决策。

SQLite

SQL 输出插件使用动态模式将 Telegraf 指标写入 SQL 数据库,其中每种指标类型对应一个表。 对于 SQLite,该插件使用 modernc.org/sqlite 驱动程序,并且需要文件 URI 格式的 DSN(例如,“file:/path/to/telegraf.db?cache=shared”)。 此配置利用标准 ANSI SQL 进行表创建和数据插入,确保与 SQLite 的功能兼容。

配置

Google Cloud Stackdriver

[[inputs.stackdriver]]
  ## GCP Project
  project = "erudite-bloom-151019"

  ## Include timeseries that start with the given metric type.
  metric_type_prefix_include = [
    "compute.googleapis.com/",
  ]

  ## Exclude timeseries that start with the given metric type.
  # metric_type_prefix_exclude = []

  ## Most metrics are updated no more than once per minute; it is recommended
  ## to override the agent level interval with a value of 1m or greater.
  interval = "1m"

  ## Maximum number of API calls to make per second.  The quota for accounts
  ## varies, it can be viewed on the API dashboard:
  ##   https://cloud.google.com/monitoring/quotas#quotas_and_limits
  # rate_limit = 14

  ## The delay and window options control the number of points selected on
  ## each gather.  When set, metrics are gathered between:
  ##   start: now() - delay - window
  ##   end:   now() - delay
  #
  ## Collection delay; if set too low metrics may not yet be available.
  # delay = "5m"
  #
  ## If unset, the window will start at 1m and be updated dynamically to span
  ## the time between calls (approximately the length of the plugin interval).
  # window = "1m"

  ## TTL for cached list of metric types.  This is the maximum amount of time
  ## it may take to discover new metrics.
  # cache_ttl = "1h"

  ## If true, raw bucket counts are collected for distribution value types.
  ## For a more lightweight collection, you may wish to disable and use
  ## distribution_aggregation_aligners instead.
  # gather_raw_distribution_buckets = true

  ## Aggregate functions to be used for metrics whose value type is
  ## distribution.  These aggregate values are recorded in in addition to raw
  ## bucket counts; if they are enabled.
  ##
  ## For a list of aligner strings see:
  ##   https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
  # distribution_aggregation_aligners = [
  #  "ALIGN_PERCENTILE_99",
  #  "ALIGN_PERCENTILE_95",
  #  "ALIGN_PERCENTILE_50",
  # ]

  ## Filters can be added to reduce the number of time series matched.  All
  ## functions are supported: starts_with, ends_with, has_substring, and
  ## one_of.  Only the '=' operator is supported.
  ##
  ## The logical operators when combining filters are defined statically using
  ## the following values:
  ##   filter ::=  {AND  AND  AND }
  ##   resource_labels ::=  {OR }
  ##   metric_labels ::=  {OR }
  ##   user_labels ::=  {OR }
  ##   system_labels ::=  {OR }
  ##
  ## For more details, see https://cloud.google.com/monitoring/api/v3/filters
  #
  ## Resource labels refine the time series selection with the following expression:
  ##   resource.labels. = 
  # [[inputs.stackdriver.filter.resource_labels]]
  #   key = "instance_name"
  #   value = 'starts_with("localhost")'
  #
  ## Metric labels refine the time series selection with the following expression:
  ##   metric.labels. = 
  #  [[inputs.stackdriver.filter.metric_labels]]
  #    key = "device_name"
  #    value = 'one_of("sda", "sdb")'
  #
  ## User labels refine the time series selection with the following expression:
  ##   metadata.user_labels."" = 
  #  [[inputs.stackdriver.filter.user_labels]]
  #    key = "environment"
  #    value = 'one_of("prod", "staging")'
  #
  ## System labels refine the time series selection with the following expression:
  ##   metadata.system_labels."" = 
  #  [[inputs.stackdriver.filter.system_labels]]
  #    key = "machine_type"
  #    value = 'starts_with("e2-")'
</code></pre>

SQLite

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "sqlite"

  ## Data source name
  ## For SQLite, the DSN is a filename or URL with the scheme "file:".
  ## Example: "file:/path/to/telegraf.db?cache=shared"
  data_source_name = "file:/path/to/telegraf.db?cache=shared"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Google Cloud Stackdriver

  1. 将云指标集成到自定义仪表板中:借助此插件,团队可以将 Google Cloud 中的指标导入到个性化仪表板中,从而可以实时监控应用程序性能和资源利用率。 通过自定义云指标的可视化表示,运营团队可以轻松识别趋势和异常,从而在问题升级之前进行主动管理。

  2. 自动化警报和分析:用户可以设置自动化警报机制,利用插件的指标来跟踪资源阈值。 此功能使团队能够通过提供即时通知来对性能下降或中断做出快速响应,从而缩短平均恢复时间并确保持续的运营效率。

  3. 跨平台资源比较:该插件可用于提取各种 Google Cloud 服务的指标,并将它们与本地资源进行比较。 这种跨平台可见性有助于组织就资源分配和扩展策略做出明智的决策,并优化云支出与本地基础设施。

  4. 用于容量规划的历史数据分析:通过长期收集历史指标,该插件使团队能够进行全面的容量规划。 了解过去的性能趋势有助于准确预测资源需求,从而实现更好的预算和投资策略。

SQLite

  1. 本地监控存储:配置插件以将指标写入本地 SQLite 数据库文件。 这非常适合不需要设置全规模数据库服务器的轻量级部署。
  2. 嵌入式应用程序:将 SQLite 用作边缘设备中嵌入式应用程序的后端,受益于其基于文件的架构和最低资源需求。
  3. 用于测试的快速设置:利用 SQLite 的易用性,快速设置 Telegraf 指标收集的测试环境,而无需外部数据库服务。
  4. 自定义模式管理:如果您需要特定的列类型或索引,请调整表创建模板以预定义您的模式,从而确保与您的应用程序的需求兼容。

反馈

感谢您成为我们社区的一份子! 如果您对这些页面有任何一般反馈或发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,这是排名第一的旨在与 Telegraf 协同扩展的时间序列平台。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成