Google Cloud Stackdriver 和 OpenTSDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑Stackdriver 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件能够通过 Stackdriver Monitoring API 从 Google Cloud 服务收集监控数据。它旨在通过收集相关指标来帮助用户监控其云基础设施的性能和健康状况。

OpenTSDB 插件有助于 Telegraf 与 OpenTSDB 的集成,允许用户将时间序列指标无缝推送到 OpenTSDB 后端。

集成详情

Google Cloud Stackdriver

Stackdriver Telegraf 插件允许用户使用 Cloud Monitoring API v3 从 Google Cloud Monitoring 查询时间序列数据。借助此插件,用户可以轻松地将 Google Cloud 监控指标集成到其监控堆栈中。此 API 提供了有关在 Google Cloud 中运行的资源和应用程序的大量见解,包括性能、正常运行时间和运营指标。该插件支持各种配置选项来过滤和优化检索到的数据,使用户能够根据其特定需求自定义其监控设置。这种集成有助于更顺畅地维护云资源的健康和性能,并协助团队根据历史和当前的性能统计数据做出数据驱动的决策。

OpenTSDB

OpenTSDB 插件旨在通过 telnet 或 HTTP 模式将指标发送到 OpenTSDB 实例。随着 OpenTSDB 2.0 的推出,推荐的指标发送方法是通过 HTTP API,它允许通过配置“http_batch_size”来批量处理指标。该插件支持多个配置选项,包括指标前缀、服务器主机和端口规范、反向代理的 URI 路径自定义以及用于诊断与 OpenTSDB 通信问题的调试选项。此插件在生成时间序列数据并且需要将其高效存储在可扩展的时间序列数据库(如 OpenTSDB)中的场景中特别有用,使其适用于广泛的监控和分析应用程序。

配置

Google Cloud Stackdriver

[[inputs.stackdriver]]
  ## GCP Project
  project = "erudite-bloom-151019"

  ## Include timeseries that start with the given metric type.
  metric_type_prefix_include = [
    "compute.googleapis.com/",
  ]

  ## Exclude timeseries that start with the given metric type.
  # metric_type_prefix_exclude = []

  ## Most metrics are updated no more than once per minute; it is recommended
  ## to override the agent level interval with a value of 1m or greater.
  interval = "1m"

  ## Maximum number of API calls to make per second.  The quota for accounts
  ## varies, it can be viewed on the API dashboard:
  ##   https://cloud.google.com/monitoring/quotas#quotas_and_limits
  # rate_limit = 14

  ## The delay and window options control the number of points selected on
  ## each gather.  When set, metrics are gathered between:
  ##   start: now() - delay - window
  ##   end:   now() - delay
  #
  ## Collection delay; if set too low metrics may not yet be available.
  # delay = "5m"
  #
  ## If unset, the window will start at 1m and be updated dynamically to span
  ## the time between calls (approximately the length of the plugin interval).
  # window = "1m"

  ## TTL for cached list of metric types.  This is the maximum amount of time
  ## it may take to discover new metrics.
  # cache_ttl = "1h"

  ## If true, raw bucket counts are collected for distribution value types.
  ## For a more lightweight collection, you may wish to disable and use
  ## distribution_aggregation_aligners instead.
  # gather_raw_distribution_buckets = true

  ## Aggregate functions to be used for metrics whose value type is
  ## distribution.  These aggregate values are recorded in in addition to raw
  ## bucket counts; if they are enabled.
  ##
  ## For a list of aligner strings see:
  ##   https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
  # distribution_aggregation_aligners = [
  #  "ALIGN_PERCENTILE_99",
  #  "ALIGN_PERCENTILE_95",
  #  "ALIGN_PERCENTILE_50",
  # ]

  ## Filters can be added to reduce the number of time series matched.  All
  ## functions are supported: starts_with, ends_with, has_substring, and
  ## one_of.  Only the '=' operator is supported.
  ##
  ## The logical operators when combining filters are defined statically using
  ## the following values:
  ##   filter ::=  {AND  AND  AND }
  ##   resource_labels ::=  {OR }
  ##   metric_labels ::=  {OR }
  ##   user_labels ::=  {OR }
  ##   system_labels ::=  {OR }
  ##
  ## For more details, see https://cloud.google.com/monitoring/api/v3/filters
  #
  ## Resource labels refine the time series selection with the following expression:
  ##   resource.labels. = 
  # [[inputs.stackdriver.filter.resource_labels]]
  #   key = "instance_name"
  #   value = 'starts_with("localhost")'
  #
  ## Metric labels refine the time series selection with the following expression:
  ##   metric.labels. = 
  #  [[inputs.stackdriver.filter.metric_labels]]
  #    key = "device_name"
  #    value = 'one_of("sda", "sdb")'
  #
  ## User labels refine the time series selection with the following expression:
  ##   metadata.user_labels."" = 
  #  [[inputs.stackdriver.filter.user_labels]]
  #    key = "environment"
  #    value = 'one_of("prod", "staging")'
  #
  ## System labels refine the time series selection with the following expression:
  ##   metadata.system_labels."" = 
  #  [[inputs.stackdriver.filter.system_labels]]
  #    key = "machine_type"
  #    value = 'starts_with("e2-")'
</code></pre>

OpenTSDB

[[outputs.opentsdb]]
  ## prefix for metrics keys
  prefix = "my.specific.prefix."

  ## DNS name of the OpenTSDB server
  ## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
  ## telnet API. "http://opentsdb.example.com" will use the Http API.
  host = "opentsdb.example.com"

  ## Port of the OpenTSDB server
  port = 4242

  ## Number of data points to send to OpenTSDB in Http requests.
  ## Not used with telnet API.
  http_batch_size = 50

  ## URI Path for Http requests to OpenTSDB.
  ## Used in cases where OpenTSDB is located behind a reverse proxy.
  http_path = "/api/put"

  ## Debug true - Prints OpenTSDB communication
  debug = false

  ## Separator separates measurement name from field
  separator = "_"

输入和输出集成示例

Google Cloud Stackdriver

  1. 将云指标集成到自定义仪表板中:借助此插件,团队可以将来自 Google Cloud 的指标导入个性化仪表板,从而实现对应用程序性能和资源利用率的实时监控。通过自定义云指标的可视化表示,运营团队可以轻松识别趋势和异常,从而在问题升级之前实现主动管理。

  2. 自动化警报和分析:用户可以设置自动化警报机制,利用插件的指标来跟踪资源阈值。此功能使团队能够通过提供即时通知来快速响应性能下降或中断,从而缩短平均恢复时间并确保持续的运营效率。

  3. 跨平台资源比较:该插件可用于从各种 Google Cloud 服务中提取指标,并将它们与本地资源进行比较。这种跨平台可见性有助于组织就资源分配和扩展策略做出明智的决策,并优化云支出与本地基础设施。

  4. 用于容量规划的历史数据分析:通过长期收集历史指标,该插件使团队能够进行全面的容量规划。了解过去的性能趋势有助于准确预测资源需求,从而实现更好的预算和投资策略。

OpenTSDB

  1. 实时基础设施监控:利用 OpenTSDB 插件收集和存储来自各种基础设施组件的指标。通过配置插件将指标推送到 OpenTSDB,组织可以集中查看其基础设施的健康状况和长期性能。

  2. 自定义应用程序指标跟踪:将 OpenTSDB 插件集成到自定义应用程序中,以跟踪关键绩效指标 (KPI),例如响应时间、错误率和用户交互。此设置允许开发人员和产品团队可视化应用程序性能趋势并做出数据驱动的决策。

  3. 自动化异常检测:将插件与机器学习算法结合使用,以自动检测发送到 OpenTSDB 的时间序列数据中的异常。通过持续监控传入的指标,系统可以训练模型,以便在潜在问题影响应用程序性能之前向用户发出警报。

  4. 历史数据分析:使用 OpenTSDB 插件存储和分析历史性能数据,用于容量规划和趋势分析。这提供了对系统长期行为的宝贵见解,帮助团队了解使用模式并为未来的增长做好准备。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成