目录
输入和输出集成概述
此插件允许通过 Stackdriver Monitoring API 从 Google Cloud 服务收集监控数据。它旨在通过收集相关指标,帮助用户监控其云基础设施的性能和健康状况。
OpenSearch 输出插件允许用户使用 HTTP 将指标直接发送到 OpenSearch 实例,从而促进 OpenSearch 生态系统内有效的数据管理和分析。
集成详情
Google Cloud Stackdriver
Stackdriver Telegraf 插件允许用户使用 Cloud Monitoring API v3 从 Google Cloud Monitoring 查询时序数据。借助此插件,用户可以轻松地将 Google Cloud 监控指标集成到其监控堆栈中。此 API 提供了关于 Google Cloud 中运行的资源和应用程序的大量见解,包括性能、正常运行时间和运营指标。该插件支持各种配置选项来过滤和优化检索到的数据,使用户能够根据其特定需求自定义其监控设置。这种集成有助于更顺畅地维护云资源的健康和性能,并协助团队根据历史和当前性能统计数据做出数据驱动的决策。
OpenSearch
OpenSearch Telegraf 插件通过 HTTP 与 OpenSearch 数据库集成,从而可以简化指标的收集和存储。作为专为 OpenSearch 2.x 及更高版本设计的强大工具,该插件在提供强大功能的同时,还通过原始 Elasticsearch 插件提供与 1.x 的兼容性。此插件有助于在 OpenSearch 中创建和管理索引,自动管理模板并确保数据结构化以进行有效分析。该插件支持各种配置选项,例如索引名称、身份验证、运行状况检查和值处理,使其可以根据不同的操作要求进行定制。其功能使其对于希望利用 OpenSearch 的强大功能进行指标存储和查询的组织至关重要。
配置
Google Cloud Stackdriver
[[inputs.stackdriver]]
## GCP Project
project = "erudite-bloom-151019"
## Include timeseries that start with the given metric type.
metric_type_prefix_include = [
"compute.googleapis.com/",
]
## Exclude timeseries that start with the given metric type.
# metric_type_prefix_exclude = []
## Most metrics are updated no more than once per minute; it is recommended
## to override the agent level interval with a value of 1m or greater.
interval = "1m"
## Maximum number of API calls to make per second. The quota for accounts
## varies, it can be viewed on the API dashboard:
## https://cloud.google.com/monitoring/quotas#quotas_and_limits
# rate_limit = 14
## The delay and window options control the number of points selected on
## each gather. When set, metrics are gathered between:
## start: now() - delay - window
## end: now() - delay
#
## Collection delay; if set too low metrics may not yet be available.
# delay = "5m"
#
## If unset, the window will start at 1m and be updated dynamically to span
## the time between calls (approximately the length of the plugin interval).
# window = "1m"
## TTL for cached list of metric types. This is the maximum amount of time
## it may take to discover new metrics.
# cache_ttl = "1h"
## If true, raw bucket counts are collected for distribution value types.
## For a more lightweight collection, you may wish to disable and use
## distribution_aggregation_aligners instead.
# gather_raw_distribution_buckets = true
## Aggregate functions to be used for metrics whose value type is
## distribution. These aggregate values are recorded in in addition to raw
## bucket counts; if they are enabled.
##
## For a list of aligner strings see:
## https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
# distribution_aggregation_aligners = [
# "ALIGN_PERCENTILE_99",
# "ALIGN_PERCENTILE_95",
# "ALIGN_PERCENTILE_50",
# ]
## Filters can be added to reduce the number of time series matched. All
## functions are supported: starts_with, ends_with, has_substring, and
## one_of. Only the '=' operator is supported.
##
## The logical operators when combining filters are defined statically using
## the following values:
## filter ::= {AND AND AND }
## resource_labels ::= {OR }
## metric_labels ::= {OR }
## user_labels ::= {OR }
## system_labels ::= {OR }
##
## For more details, see https://cloud.google.com/monitoring/api/v3/filters
#
## Resource labels refine the time series selection with the following expression:
## resource.labels. =
# [[inputs.stackdriver.filter.resource_labels]]
# key = "instance_name"
# value = 'starts_with("localhost")'
#
## Metric labels refine the time series selection with the following expression:
## metric.labels. =
# [[inputs.stackdriver.filter.metric_labels]]
# key = "device_name"
# value = 'one_of("sda", "sdb")'
#
## User labels refine the time series selection with the following expression:
## metadata.user_labels."" =
# [[inputs.stackdriver.filter.user_labels]]
# key = "environment"
# value = 'one_of("prod", "staging")'
#
## System labels refine the time series selection with the following expression:
## metadata.system_labels."" =
# [[inputs.stackdriver.filter.system_labels]]
# key = "machine_type"
# value = 'starts_with("e2-")'
</code></pre>
OpenSearch
[[outputs.opensearch]]
## URLs
## The full HTTP endpoint URL for your OpenSearch instance. Multiple URLs can
## be specified as part of the same cluster, but only one URLs is used to
## write during each interval.
urls = ["http://node1.os.example.com:9200"]
## Index Name
## Target index name for metrics (OpenSearch will create if it not exists).
## This is a Golang template (see https://pkg.go.dev/text/template)
## You can also specify
## metric name (`{{.Name}}`), tag value (`{{.Tag "tag_name"}}`), field value (`{{.Field "field_name"}}`)
## If the tag does not exist, the default tag value will be empty string "".
## the timestamp (`{{.Time.Format "xxxxxxxxx"}}`).
## For example: "telegraf-{{.Time.Format \"2006-01-02\"}}-{{.Tag \"host\"}}" would set it to telegraf-2023-07-27-HostName
index_name = ""
## Timeout
## OpenSearch client timeout
# timeout = "5s"
## Sniffer
## Set to true to ask OpenSearch a list of all cluster nodes,
## thus it is not necessary to list all nodes in the urls config option
# enable_sniffer = false
## GZIP Compression
## Set to true to enable gzip compression
# enable_gzip = false
## Health Check Interval
## Set the interval to check if the OpenSearch nodes are available
## Setting to "0s" will disable the health check (not recommended in production)
# health_check_interval = "10s"
## Set the timeout for periodic health checks.
# health_check_timeout = "1s"
## HTTP basic authentication details.
# username = ""
# password = ""
## HTTP bearer token authentication details
# auth_bearer_token = ""
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Template Config
## Manage templates
## Set to true if you want telegraf to manage its index template.
## If enabled it will create a recommended index template for telegraf indexes
# manage_template = true
## Template Name
## The template name used for telegraf indexes
# template_name = "telegraf"
## Overwrite Templates
## Set to true if you want telegraf to overwrite an existing template
# overwrite_template = false
## Document ID
## If set to true a unique ID hash will be sent as
## sha256(concat(timestamp,measurement,series-hash)) string. It will enable
## data resend and update metric points avoiding duplicated metrics with
## different id's
# force_document_id = false
## Value Handling
## Specifies the handling of NaN and Inf values.
## This option can have the following values:
## none -- do not modify field-values (default); will produce an error
## if NaNs or infs are encountered
## drop -- drop fields containing NaNs or infs
## replace -- replace with the value in "float_replacement_value" (default: 0.0)
## NaNs and inf will be replaced with the given number, -inf with the negative of that number
# float_handling = "none"
# float_replacement_value = 0.0
## Pipeline Config
## To use a ingest pipeline, set this to the name of the pipeline you want to use.
# use_pipeline = "my_pipeline"
## Pipeline Name
## Additionally, you can specify a tag name using the notation (`{{.Tag "tag_name"}}`)
## which will be used as the pipeline name (e.g. "{{.Tag \"os_pipeline\"}}").
## If the tag does not exist, the default pipeline will be used as the pipeline.
## If no default pipeline is set, no pipeline is used for the metric.
# default_pipeline = ""
输入和输出集成示例
Google Cloud Stackdriver
-
将云指标集成到自定义仪表板中:借助此插件,团队可以将来自 Google Cloud 的指标导入到个性化仪表板中,从而可以实时监控应用程序性能和资源利用率。通过自定义云指标的可视化表示,运营团队可以轻松识别趋势和异常,从而在问题升级之前进行主动管理。
-
自动化警报和分析:用户可以设置自动化警报机制,利用插件的指标来跟踪资源阈值。此功能使团队能够通过提供即时通知来快速响应性能下降或中断,从而缩短平均恢复时间并确保持续的运营效率。
-
跨平台资源比较:该插件可用于从各种 Google Cloud 服务中提取指标,并将其与本地资源进行比较。这种跨平台可见性有助于组织就资源分配和扩展策略做出明智的决策,并优化云支出与本地基础设施。
-
用于容量规划的历史数据分析:通过长期收集历史指标,该插件使团队能够进行全面的容量规划。了解过去的性能趋势有助于准确预测资源需求,从而实现更好的预算和投资策略。
OpenSearch
-
时序数据的动态索引:利用 OpenSearch Telegraf 插件为时序指标动态创建索引,确保数据以有利于基于时间的查询的有序方式存储。通过使用 Go 模板定义索引模式,用户可以利用该插件创建每日或每月索引,这可以大大简化数据管理和长期检索,从而提高分析性能。
-
多租户应用程序的集中日志记录:在多租户应用程序中实施 OpenSearch 插件,其中每个租户的日志都发送到单独的索引。这可以在保持数据隔离的同时,对每个租户进行有针对性的分析和监控。通过利用索引名称模板功能,用户可以自动创建租户特定的索引,这不仅简化了流程,还提高了租户数据的安全性和可访问性。
-
与机器学习集成以进行异常检测:将 OpenSearch 插件与机器学习工具结合使用,以自动检测指标数据中的异常。通过配置插件将实时指标发送到 OpenSearch,用户可以在传入的数据流上应用机器学习模型,以识别异常值或不寻常的模式,从而促进主动监控和快速补救措施。
-
使用 OpenSearch 增强监控仪表板:使用从 OpenSearch 收集的指标创建实时仪表板,以深入了解系统性能。通过将指标馈送到 OpenSearch,组织可以利用 OpenSearch Dashboards 可视化关键性能指标,使运营团队能够快速评估健康状况和性能,并做出数据驱动的决策。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。