目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法
输入和输出集成概览
此插件允许通过 Stackdriver Monitoring API 从 Google Cloud 服务收集监控数据。它旨在通过收集相关指标来帮助用户监控其云基础设施的性能和健康状况。
Telegraf SQL 插件允许您将来自 Telegraf 的指标直接存储到 MySQL 数据库中,从而更轻松地分析和可视化收集的指标。
集成详细信息
Google Cloud Stackdriver
Stackdriver Telegraf 插件允许用户使用 Cloud Monitoring API v3 从 Google Cloud Monitoring 查询时间序列数据。借助此插件,用户可以轻松地将 Google Cloud 监控指标集成到其监控堆栈中。此 API 提供了关于 Google Cloud 中运行的资源和应用程序的大量见解,包括性能、正常运行时间和操作指标。该插件支持各种配置选项来过滤和优化检索到的数据,使用户能够根据其特定需求自定义其监控设置。此集成有助于更顺畅地维护云资源的健康和性能,并协助团队根据历史和当前性能统计数据做出数据驱动的决策。
MySQL
Telegraf 的 SQL 输出插件旨在通过基于传入指标动态创建表和列,将指标数据无缝写入 SQL 数据库。当配置为 MySQL 时,该插件利用 go-sql-driver/mysql,这需要启用 ANSI_QUOTES SQL 模式以确保正确处理带引号的标识符。这种动态模式创建方法确保每个指标都存储在其自己的表中,其结构源自其字段和标签,从而提供系统性能的详细、带时间戳的记录。该插件的灵活性使其能够处理高吞吐量环境,使其成为需要强大、精细的指标日志记录和历史数据分析的场景的理想选择。
配置
Google Cloud Stackdriver
[[inputs.stackdriver]]
## GCP Project
project = "erudite-bloom-151019"
## Include timeseries that start with the given metric type.
metric_type_prefix_include = [
"compute.googleapis.com/",
]
## Exclude timeseries that start with the given metric type.
# metric_type_prefix_exclude = []
## Most metrics are updated no more than once per minute; it is recommended
## to override the agent level interval with a value of 1m or greater.
interval = "1m"
## Maximum number of API calls to make per second. The quota for accounts
## varies, it can be viewed on the API dashboard:
## https://cloud.google.com/monitoring/quotas#quotas_and_limits
# rate_limit = 14
## The delay and window options control the number of points selected on
## each gather. When set, metrics are gathered between:
## start: now() - delay - window
## end: now() - delay
#
## Collection delay; if set too low metrics may not yet be available.
# delay = "5m"
#
## If unset, the window will start at 1m and be updated dynamically to span
## the time between calls (approximately the length of the plugin interval).
# window = "1m"
## TTL for cached list of metric types. This is the maximum amount of time
## it may take to discover new metrics.
# cache_ttl = "1h"
## If true, raw bucket counts are collected for distribution value types.
## For a more lightweight collection, you may wish to disable and use
## distribution_aggregation_aligners instead.
# gather_raw_distribution_buckets = true
## Aggregate functions to be used for metrics whose value type is
## distribution. These aggregate values are recorded in in addition to raw
## bucket counts; if they are enabled.
##
## For a list of aligner strings see:
## https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
# distribution_aggregation_aligners = [
# "ALIGN_PERCENTILE_99",
# "ALIGN_PERCENTILE_95",
# "ALIGN_PERCENTILE_50",
# ]
## Filters can be added to reduce the number of time series matched. All
## functions are supported: starts_with, ends_with, has_substring, and
## one_of. Only the '=' operator is supported.
##
## The logical operators when combining filters are defined statically using
## the following values:
## filter ::= {AND AND AND }
## resource_labels ::= {OR }
## metric_labels ::= {OR }
## user_labels ::= {OR }
## system_labels ::= {OR }
##
## For more details, see https://cloud.google.com/monitoring/api/v3/filters
#
## Resource labels refine the time series selection with the following expression:
## resource.labels. =
# [[inputs.stackdriver.filter.resource_labels]]
# key = "instance_name"
# value = 'starts_with("localhost")'
#
## Metric labels refine the time series selection with the following expression:
## metric.labels. =
# [[inputs.stackdriver.filter.metric_labels]]
# key = "device_name"
# value = 'one_of("sda", "sdb")'
#
## User labels refine the time series selection with the following expression:
## metadata.user_labels."" =
# [[inputs.stackdriver.filter.user_labels]]
# key = "environment"
# value = 'one_of("prod", "staging")'
#
## System labels refine the time series selection with the following expression:
## metadata.system_labels."" =
# [[inputs.stackdriver.filter.system_labels]]
# key = "machine_type"
# value = 'starts_with("e2-")'
</code></pre>
MySQL
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
输入和输出集成示例
Google Cloud Stackdriver
-
将云指标集成到自定义仪表板中:借助此插件,团队可以将来自 Google Cloud 的指标导入到个性化仪表板中,从而可以实时监控应用程序性能和资源利用率。通过自定义云指标的可视化表示,运营团队可以轻松识别趋势和异常,从而在问题升级之前进行主动管理。
-
自动化警报和分析:用户可以设置自动化警报机制,利用插件的指标来跟踪资源阈值。此功能使团队能够通过提供即时通知来快速响应性能下降或中断,从而缩短平均恢复时间并确保持续的运营效率。
-
跨平台资源比较:该插件可用于从各种 Google Cloud 服务中提取指标,并将它们与本地资源进行比较。这种跨平台可见性有助于组织就资源分配和扩展策略做出明智的决策,并优化云支出与本地基础设施。
-
用于容量规划的历史数据分析:通过长期收集历史指标,该插件使团队能够进行全面的容量规划。了解过去的性能趋势有助于准确预测资源需求,从而实现更好的预算和投资策略。
MySQL
-
实时 Web 分析存储:利用该插件捕获网站性能指标并将它们存储在 MySQL 中。此设置使团队能够监控用户交互、分析流量模式并根据实时数据洞察动态调整站点功能。
-
物联网设备监控:使用该插件从物联网传感器网络收集指标并将它们记录到 MySQL 数据库中。此用例支持持续监控设备健康状况和性能,从而实现预测性维护和对异常的即时响应。
-
金融交易日志记录:记录带有精确时间戳的高频金融交易数据。此方法支持强大的审计跟踪、实时欺诈检测以及全面的历史分析,以用于合规性和报告目的。
-
应用程序性能基准测试:将插件与应用程序性能监控系统集成,以将指标记录到 MySQL 中。这有助于长期进行详细的基准测试和趋势分析,使组织能够识别性能瓶颈并有效地优化资源分配。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法