目录
输入和输出集成概述
此插件允许通过 Stackdriver Monitoring API 从 Google Cloud 服务收集监控数据。 它旨在通过收集相关指标,帮助用户监控其云基础设施的性能和健康状况。
Telegraf 的 SQL 插件方便将指标存储在 SQL 数据库中。 当配置为 Microsoft SQL Server 时,它支持特定的 DSN 格式和模式要求,从而实现与 SQL Server 的无缝集成。
集成详情
Google Cloud Stackdriver
Stackdriver Telegraf 插件允许用户使用 Cloud Monitoring API v3 从 Google Cloud Monitoring 查询时序数据。 通过此插件,用户可以轻松地将 Google Cloud 监控指标集成到其监控堆栈中。 此 API 提供了关于 Google Cloud 中运行的资源和应用程序的大量见解,包括性能、正常运行时间和运营指标。 该插件支持各种配置选项来过滤和优化检索到的数据,使用户能够根据其特定需求自定义其监控设置。 此集成有助于更顺畅地维护云资源的健康和性能,并协助团队基于历史和当前性能统计数据做出数据驱动的决策。
Microsoft SQL Server
Telegraf 的 Microsoft SQL Server SQL 输出插件旨在通过动态创建与传入数据结构匹配的表和列来捕获和存储指标数据。 此集成利用 go-mssqldb 驱动程序,该驱动程序通过包含服务器、端口和数据库详细信息的 DSN 遵循 SQL Server 连接协议。 尽管由于单元测试有限,该驱动程序被认为是实验性的,但它为动态模式生成和数据插入提供了强大的支持,从而可以详细记录系统性能的时间戳记录。 尽管具有实验性质,但这种灵活性使其成为需要可靠和精细指标日志记录的环境的宝贵工具。
配置
Google Cloud Stackdriver
[[inputs.stackdriver]]
## GCP Project
project = "erudite-bloom-151019"
## Include timeseries that start with the given metric type.
metric_type_prefix_include = [
"compute.googleapis.com/",
]
## Exclude timeseries that start with the given metric type.
# metric_type_prefix_exclude = []
## Most metrics are updated no more than once per minute; it is recommended
## to override the agent level interval with a value of 1m or greater.
interval = "1m"
## Maximum number of API calls to make per second. The quota for accounts
## varies, it can be viewed on the API dashboard:
## https://cloud.google.com/monitoring/quotas#quotas_and_limits
# rate_limit = 14
## The delay and window options control the number of points selected on
## each gather. When set, metrics are gathered between:
## start: now() - delay - window
## end: now() - delay
#
## Collection delay; if set too low metrics may not yet be available.
# delay = "5m"
#
## If unset, the window will start at 1m and be updated dynamically to span
## the time between calls (approximately the length of the plugin interval).
# window = "1m"
## TTL for cached list of metric types. This is the maximum amount of time
## it may take to discover new metrics.
# cache_ttl = "1h"
## If true, raw bucket counts are collected for distribution value types.
## For a more lightweight collection, you may wish to disable and use
## distribution_aggregation_aligners instead.
# gather_raw_distribution_buckets = true
## Aggregate functions to be used for metrics whose value type is
## distribution. These aggregate values are recorded in in addition to raw
## bucket counts; if they are enabled.
##
## For a list of aligner strings see:
## https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
# distribution_aggregation_aligners = [
# "ALIGN_PERCENTILE_99",
# "ALIGN_PERCENTILE_95",
# "ALIGN_PERCENTILE_50",
# ]
## Filters can be added to reduce the number of time series matched. All
## functions are supported: starts_with, ends_with, has_substring, and
## one_of. Only the '=' operator is supported.
##
## The logical operators when combining filters are defined statically using
## the following values:
## filter ::= {AND AND AND }
## resource_labels ::= {OR }
## metric_labels ::= {OR }
## user_labels ::= {OR }
## system_labels ::= {OR }
##
## For more details, see https://cloud.google.com/monitoring/api/v3/filters
#
## Resource labels refine the time series selection with the following expression:
## resource.labels. =
# [[inputs.stackdriver.filter.resource_labels]]
# key = "instance_name"
# value = 'starts_with("localhost")'
#
## Metric labels refine the time series selection with the following expression:
## metric.labels. =
# [[inputs.stackdriver.filter.metric_labels]]
# key = "device_name"
# value = 'one_of("sda", "sdb")'
#
## User labels refine the time series selection with the following expression:
## metadata.user_labels."" =
# [[inputs.stackdriver.filter.user_labels]]
# key = "environment"
# value = 'one_of("prod", "staging")'
#
## System labels refine the time series selection with the following expression:
## metadata.system_labels."" =
# [[inputs.stackdriver.filter.system_labels]]
# key = "machine_type"
# value = 'starts_with("e2-")'
</code></pre>
Microsoft SQL Server
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "mssql"
## Data source name
## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## You can customize the mapping if needed.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
输入和输出集成示例
Google Cloud Stackdriver
-
将云指标集成到自定义仪表板中:借助此插件,团队可以将 Google Cloud 的指标输入到个性化仪表板中,从而可以实时监控应用程序性能和资源利用率。 通过自定义云指标的可视化表示,运营团队可以轻松识别趋势和异常,从而在问题升级之前进行主动管理。
-
自动化警报和分析:用户可以设置自动化警报机制,利用插件的指标来跟踪资源阈值。 此功能使团队能够通过提供即时通知来快速响应性能下降或中断,从而缩短平均恢复时间并确保持续的运营效率。
-
跨平台资源比较:该插件可用于从各种 Google Cloud 服务中提取指标,并将它们与本地资源进行比较。 这种跨平台可见性有助于组织就资源分配和扩展策略做出明智的决策,并优化云支出与本地基础设施。
-
用于容量规划的历史数据分析:通过长期收集历史指标,该插件使团队能够进行全面的容量规划。 了解过去的性能趋势有助于准确预测资源需求,从而实现更好的预算和投资策略。
Microsoft SQL Server
-
企业应用程序监控:利用该插件捕获从 SQL Server 上运行的企业应用程序的详细性能指标。 此设置允许 IT 团队分析系统性能、跟踪事务时间并识别复杂多层环境中的瓶颈。
-
动态基础设施审计:部署该插件以在 SQL Server 中创建基础设施变更和性能指标的动态审计日志。 此用例非常适合需要实时监控和历史分析系统性能以实现合规性和优化的组织。
-
自动化性能基准测试:使用该插件持续记录和分析 SQL Server 数据库的性能指标。 这实现了自动化基准测试,其中将历史数据与当前性能进行比较,从而帮助快速识别服务中的异常或退化。
-
集成 DevOps 仪表板:将该插件与 DevOps 监控工具集成,以将来自 SQL Server 的实时指标馈送到集中式仪表板。 这提供了应用程序运行状况的整体视图,使团队可以将 SQL Server 性能与应用程序级事件相关联,从而实现更快的故障排除和主动维护。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。