Google Cloud Stackdriver 和 Graylog 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Stackdriver 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 一起扩展的时间序列平台。

查看入门方法

输入和输出集成概述

此插件可以通过 Stackdriver Monitoring API 从 Google Cloud 服务收集监控数据。 它旨在通过收集相关指标来帮助用户监控其云基础设施的性能和健康状况。

Graylog 插件允许您将 Telegraf 指标发送到 Graylog 服务器,利用 GELF 格式进行结构化日志记录。

集成详情

Google Cloud Stackdriver

Stackdriver Telegraf 插件允许用户使用 Cloud Monitoring API v3 从 Google Cloud Monitoring 查询时间序列数据。 通过此插件,用户可以轻松地将 Google Cloud 监控指标集成到他们的监控堆栈中。 此 API 提供了有关 Google Cloud 中运行的资源和应用程序的丰富见解,包括性能、正常运行时间和运营指标。 该插件支持各种配置选项来过滤和优化检索到的数据,使用户可以根据其特定需求自定义其监控设置。 这种集成有助于更顺畅地维护云资源的健康和性能,并帮助团队根据历史和当前性能统计数据做出数据驱动的决策。

Graylog

Graylog 插件旨在用于使用 GELF (Graylog Extended Log Format) 格式将指标发送到 Graylog 实例。 GELF 有助于标准化日志记录数据,使系统更容易发送和分析日志。 该插件遵循 GELF 规范,该规范规定了有效负载中特定字段的要求。 值得注意的是,时间戳必须为 UNIX 格式,如果存在,插件会将时间戳原样发送到 Graylog,而不会进行更改。 如果省略,它会自动生成时间戳。 此外,规范中未明确定义的任何额外字段都将以一个下划线作为前缀,这有助于保持数据的组织性并符合 GELF 的要求。 此功能对于实时监控应用程序和基础设施的用户尤其有价值,因为它允许跨多个系统进行无缝集成和改进的可视性。

配置

Google Cloud Stackdriver

[[inputs.stackdriver]]
  ## GCP Project
  project = "erudite-bloom-151019"

  ## Include timeseries that start with the given metric type.
  metric_type_prefix_include = [
    "compute.googleapis.com/",
  ]

  ## Exclude timeseries that start with the given metric type.
  # metric_type_prefix_exclude = []

  ## Most metrics are updated no more than once per minute; it is recommended
  ## to override the agent level interval with a value of 1m or greater.
  interval = "1m"

  ## Maximum number of API calls to make per second.  The quota for accounts
  ## varies, it can be viewed on the API dashboard:
  ##   https://cloud.google.com/monitoring/quotas#quotas_and_limits
  # rate_limit = 14

  ## The delay and window options control the number of points selected on
  ## each gather.  When set, metrics are gathered between:
  ##   start: now() - delay - window
  ##   end:   now() - delay
  #
  ## Collection delay; if set too low metrics may not yet be available.
  # delay = "5m"
  #
  ## If unset, the window will start at 1m and be updated dynamically to span
  ## the time between calls (approximately the length of the plugin interval).
  # window = "1m"

  ## TTL for cached list of metric types.  This is the maximum amount of time
  ## it may take to discover new metrics.
  # cache_ttl = "1h"

  ## If true, raw bucket counts are collected for distribution value types.
  ## For a more lightweight collection, you may wish to disable and use
  ## distribution_aggregation_aligners instead.
  # gather_raw_distribution_buckets = true

  ## Aggregate functions to be used for metrics whose value type is
  ## distribution.  These aggregate values are recorded in in addition to raw
  ## bucket counts; if they are enabled.
  ##
  ## For a list of aligner strings see:
  ##   https://cloud.google.com/monitoring/api/ref_v3/rpc/google.monitoring.v3#aligner
  # distribution_aggregation_aligners = [
  #  "ALIGN_PERCENTILE_99",
  #  "ALIGN_PERCENTILE_95",
  #  "ALIGN_PERCENTILE_50",
  # ]

  ## Filters can be added to reduce the number of time series matched.  All
  ## functions are supported: starts_with, ends_with, has_substring, and
  ## one_of.  Only the '=' operator is supported.
  ##
  ## The logical operators when combining filters are defined statically using
  ## the following values:
  ##   filter ::=  {AND  AND  AND }
  ##   resource_labels ::=  {OR }
  ##   metric_labels ::=  {OR }
  ##   user_labels ::=  {OR }
  ##   system_labels ::=  {OR }
  ##
  ## For more details, see https://cloud.google.com/monitoring/api/v3/filters
  #
  ## Resource labels refine the time series selection with the following expression:
  ##   resource.labels. = 
  # [[inputs.stackdriver.filter.resource_labels]]
  #   key = "instance_name"
  #   value = 'starts_with("localhost")'
  #
  ## Metric labels refine the time series selection with the following expression:
  ##   metric.labels. = 
  #  [[inputs.stackdriver.filter.metric_labels]]
  #    key = "device_name"
  #    value = 'one_of("sda", "sdb")'
  #
  ## User labels refine the time series selection with the following expression:
  ##   metadata.user_labels."" = 
  #  [[inputs.stackdriver.filter.user_labels]]
  #    key = "environment"
  #    value = 'one_of("prod", "staging")'
  #
  ## System labels refine the time series selection with the following expression:
  ##   metadata.system_labels."" = 
  #  [[inputs.stackdriver.filter.system_labels]]
  #    key = "machine_type"
  #    value = 'starts_with("e2-")'
</code></pre>

Graylog

[[outputs.graylog]]
  ## Endpoints for your graylog instances.
  servers = ["udp://127.0.0.1:12201"]

  ## Connection timeout.
  # timeout = "5s"

  ## The field to use as the GELF short_message, if unset the static string
  ## "telegraf" will be used.
  ##   example: short_message_field = "message"
  # short_message_field = ""

  ## According to GELF payload specification, additional fields names must be prefixed
  ## with an underscore. Previous versions did not prefix custom field 'name' with underscore.
  ## Set to true for backward compatibility.
  # name_field_no_prefix = false

  ## Connection retry options
  ## Attempt to connect to the endpoints if the initial connection fails.
  ## If 'false', Telegraf will give up after 3 connection attempt and will
  ## exit with an error. If set to 'true', the plugin will retry to connect
  ## to the unconnected endpoints infinitely.
  # connection_retry = false
  ## Time to wait between connection retry attempts.
  # connection_retry_wait_time = "15s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

输入和输出集成示例

Google Cloud Stackdriver

  1. 将云指标集成到自定义仪表板中:借助此插件,团队可以将来自 Google Cloud 的指标导入到个性化仪表板中,从而可以实时监控应用程序性能和资源利用率。 通过自定义云指标的可视化表示,运营团队可以轻松识别趋势和异常情况,从而在问题升级之前进行主动管理。

  2. 自动化警报和分析:用户可以设置自动化警报机制,利用插件的指标来跟踪资源阈值。 此功能使团队能够通过提供即时通知来快速响应性能下降或中断,从而缩短平均恢复时间并确保持续的运营效率。

  3. 跨平台资源比较:该插件可用于提取各种 Google Cloud 服务的指标,并将它们与本地资源进行比较。 这种跨平台可见性帮助组织就资源分配和扩展策略做出明智的决策,并优化云支出与本地基础设施。

  4. 用于容量规划的历史数据分析:通过长期收集历史指标,该插件使团队能够进行全面的容量规划。 了解过去的性能趋势有助于准确预测资源需求,从而实现更好的预算编制和投资策略。

Graylog

  1. 增强云应用程序的日志管理:使用 Graylog Telegraf 插件聚合来自跨多个服务器部署的云应用程序的日志。 通过集成此插件,团队可以集中日志记录数据,从而更轻松地排除问题、监控应用程序性能并维护符合日志记录标准。

  2. 实时安全监控:利用 Graylog 插件收集安全相关指标和日志并将其发送到 Graylog 服务器以进行实时分析。 这使安全团队能够通过关联来自基础设施内各种来源的日志来快速识别异常情况、跟踪潜在的漏洞并及时响应事件。

  3. 动态警报和通知系统:实施 Graylog 插件以增强基础设施中的警报机制。 通过将指标发送到 Graylog,团队可以根据日志模式或意外行为设置动态警报,从而实现主动监控和快速事件响应策略。

  4. 跨平台日志整合:使用 Graylog 插件来促进跨平台日志整合,跨越本地、混合和云等多样化环境。 通过以 GELF 格式标准化日志记录,组织可以确保一致的监控和故障排除实践,无论其服务托管在何处。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 一起扩展的时间序列平台。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成