SNMP Trap 和 Clickhouse 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 SNMP Trap 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。借助 InfluxDB,这个排名第一的时序平台,专为与 Telegraf 协同扩展而构建。

查看入门方法

输入和输出集成概述

SNMP Trap Telegraf 插件能够接收 SNMP 通知,通过捕获来自网络设备的重要事件,从而促进全面的网络监控。

Telegraf 的 SQL 插件使用简单的表模式和动态列生成将收集的指标发送到 SQL 数据库。当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝的数据集成。

集成详情

SNMP Trap

SNMP Trap 插件充当 SNMP 通知的接收端点,这些通知被称为陷阱和信息请求。它通过 UDP 运行,监听传入的通知,这些通知可以配置为在特定端口到达。该插件是网络监控和管理不可或缺的一部分,它允许系统收集和响应来自网络中各种设备(包括路由器、交换机和服务器)发送的 SNMP 陷阱。该插件通过 SNMPv3 支持安全传输选项,启用身份验证和加密参数以保护敏感数据。此外,它还为用户提供了配置 SNMP 多个方面的灵活性,例如 MIB 文件位置,使其能够适应各种环境和用例。建议从已弃用的 netsnmp 后端过渡到更现代的 gosmi 后端,以利用其增强的功能和支持。实施此插件的用户可以有效地监控网络事件、自动化对陷阱的响应,并维护强大的网络监控基础设施。

Clickhouse

Telegraf 的 SQL 插件被设计用于通过基于传入指标动态创建表和列,将指标数据写入 SQL 数据库。当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,以将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。这种方法确保了在高吞吐量环境中实现最佳的存储和检索性能,使其非常适合实时分析和大规模数据仓库。动态模式创建和精确的类型映射实现了详细的时序数据日志记录,这对于监控现代分布式系统至关重要。

配置

SNMP Trap

[[inputs.snmp_trap]]
  ## Transport, local address, and port to listen on.  Transport must
  ## be "udp://".  Omit local address to listen on all interfaces.
  ##   example: "udp://127.0.0.1:1234"
  ##
  ## Special permissions may be required to listen on a port less than
  ## 1024.  See README.md for details
  ##
  # service_address = "udp://:162"
  ##
  ## Path to mib files
  ## Used by the gosmi translator.
  ## To add paths when translating with netsnmp, use the MIBDIRS environment variable
  # path = ["/usr/share/snmp/mibs"]
  ##
  ## Deprecated in 1.20.0; no longer running snmptranslate
  ## Timeout running snmptranslate command
  # timeout = "5s"
  ## Snmp version; one of "1", "2c" or "3".
  # version = "2c"
  ## SNMPv3 authentication and encryption options.
  ##
  ## Security Name.
  # sec_name = "myuser"
  ## Authentication protocol; one of "MD5", "SHA", "SHA224", "SHA256", "SHA384", "SHA512" or "".
  # auth_protocol = "MD5"
  ## Authentication password.
  # auth_password = "pass"
  ## Security Level; one of "noAuthNoPriv", "authNoPriv", or "authPriv".
  # sec_level = "authNoPriv"
  ## Privacy protocol used for encrypted messages; one of "DES", "AES", "AES192", "AES192C", "AES256", "AES256C" or "".
  # priv_protocol = ""
  ## Privacy password used for encrypted messages.
  # priv_password = ""

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

SNMP Trap

  1. 集中式网络监控:将 SNMP Trap 插件集成到集中式监控解决方案中,以实时接收关于网络设备的警报。通过配置插件以监听来自各种路由器和交换机的陷阱,网络管理员可以迅速对设备中断或超出临界阈值等问题做出反应。这种设置实现了主动管理和快速解决网络问题,从而最大限度地减少停机时间。

  2. 自动化事件响应:每当收到特定陷阱时,使用 SNMP Trap 插件触发自动化事件响应工作流程。例如,如果检测到指示硬件故障的陷阱,则可以启动自动化脚本来收集诊断信息、通知支持人员,甚至尝试修复操作。这种方法通过减少人工干预和加快响应时间来提高 IT 运营的效率。

  3. 网络性能分析:部署 SNMP Trap 插件以收集性能指标以及陷阱,从而全面了解网络健康状况。通过将这些数据聚合到分析平台中,网络团队可以分析趋势、识别瓶颈并根据历史数据优化性能。这有助于围绕网络升级或变更做出明智的决策和战略规划。

  4. 与警报系统集成:将 SNMP Trap 插件连接到 PagerDuty 或 Slack 等第三方警报系统。接收到预定义的陷阱后,插件可以将警报发送到这些系统,使团队能够立即收到重要网络事件的通知。这种集成确保在正确的时间通知正确的人员,从而有助于保持高服务水平和快速解决问题。

Clickhouse

  1. 高容量数据的实时分析:使用该插件将来自大规模系统的流式指标馈送到 ClickHouse 中。这种设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库:将该插件与 ClickHouse 集成以创建强大的时序数据仓库。此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控:利用该插件在 ClickHouse 中为每种指标类型动态创建表,从而更容易管理和查询来自大量分布式系统的数据,而无需预先定义模式。

  4. 针对物联网部署的优化存储:部署该插件以将来自物联网传感器的数据摄取到 ClickHouse 中。其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您的反馈。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。借助 InfluxDB,这个排名第一的时序平台,专为与 Telegraf 协同扩展而构建。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供与 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成