Salesforce 和 AWS Timestream 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑Salesforce 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Salesforce Telegraf 插件收集有关 Salesforce 组织中 API 使用情况和限制的关键指标,从而能够有效监控和管理 API 消耗。

AWS Timestream Telegraf 插件使用户能够将指标直接发送到 Amazon 的 Timestream 服务,该服务专为时间序列数据管理而设计。此插件为身份验证、数据组织和保留设置提供了各种配置选项。

集成详情

Salesforce

Salesforce 插件允许用户收集有关 API 使用限制以及其 Salesforce 组织内剩余使用量的指标。通过利用 Salesforce 的 REST API,特别是 limits 端点,此插件提供了关于 API 使用量已消耗多少以及剩余可用量的关键见解。这对于依赖 Salesforce 进行运营的组织尤为重要,因为超出 API 限制可能会中断服务并阻碍业务流程。该插件将数据处理为结构化格式,其中包含各种 API 操作的最大值和剩余值,从而使团队更容易监控其使用情况并相应地进行计划。提供的配置允许用户自定义其凭据、环境类型(沙盒或生产)和 API 版本,确保在不同部署场景中的灵活性。

AWS Timestream

此插件旨在高效地将指标写入 Amazon 的 Timestream 服务,这是一种针对物联网和运营应用程序优化的时间序列数据库。借助此插件,Telegraf 可以发送从各种来源收集的数据,并支持身份验证、数据组织和保留管理方面的灵活配置。它利用凭证链进行身份验证,允许各种方法,例如 Web 身份、承担的角色和共享配置文件。用户可以定义指标在 Timestream 中的组织方式 - 是使用单表还是多表,以及控制磁存储和内存存储的保留期等方面。一个关键特性是它能够处理多指标记录,从而实现高效的数据摄取并有助于减少多次写入的开销。在错误处理方面,该插件包括用于解决与数据写入期间的 AWS 错误相关的常见问题的机制,例如针对限制的重试逻辑以及根据需要创建表的能力。

配置

Salesforce

[[inputs.salesforce]]
  ## specify your credentials
  ##
  username = "your_username"
  password = "your_password"
  ##
  ## (optional) security token
  # security_token = "your_security_token"
  ##
  ## (optional) environment type (sandbox or production)
  ## default is: production
  ##
  # environment = "production"
  ##
  ## (optional) API version (default: "39.0")
  ##
  # version = "39.0"

AWS Timestream

[[outputs.timestream]]
  ## Amazon Region
  region = "us-east-1"

  ## Amazon Credentials
  ## Credentials are loaded in the following order:
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  #access_key = ""
  #secret_key = ""
  #token = ""
  #role_arn = ""
  #web_identity_token_file = ""
  #role_session_name = ""
  #profile = ""
  #shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Timestream database where the metrics will be inserted.
  ## The database must exist prior to starting Telegraf.
  database_name = "yourDatabaseNameHere"

  ## Specifies if the plugin should describe the Timestream database upon starting
  ## to validate if it has access necessary permissions, connection, etc., as a safety check.
  ## If the describe operation fails, the plugin will not start
  ## and therefore the Telegraf agent will not start.
  describe_database_on_start = false

  ## Specifies how the data is organized in Timestream.
  ## Valid values are: single-table, multi-table.
  ## When mapping_mode is set to single-table, all of the data is stored in a single table.
  ## When mapping_mode is set to multi-table, the data is organized and stored in multiple tables.
  ## The default is multi-table.
  mapping_mode = "multi-table"

  ## Specifies if the plugin should create the table, if the table does not exist.
  create_table_if_not_exists = true

  ## Specifies the Timestream table magnetic store retention period in days.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_magnetic_store_retention_period_in_days = 365

  ## Specifies the Timestream table memory store retention period in hours.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_memory_store_retention_period_in_hours = 24

  ## Specifies how the data is written into Timestream.
  ## Valid values are: true, false
  ## When use_multi_measure_records is set to true, all of the tags and fields are stored
  ## as a single row in a Timestream table.
  ## When use_multi_measure_record is set to false, Timestream stores each field in a
  ## separate table row, thereby storing the tags multiple times (once for each field).
  ## The recommended setting is true.
  ## The default is false.
  use_multi_measure_records = "false"

  ## Specifies the measure_name to use when sending multi-measure records.
  ## NOTE: This property is valid when use_multi_measure_records=true and mapping_mode=multi-table
  measure_name_for_multi_measure_records = "telegraf_measure"

  ## Specifies the name of the table to write data into
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_name = ""

  ## Specifies the name of dimension when all of the data is being stored in a single table
  ## and the measurement name is transformed into the dimension value
  ## (see Mapping data from Influx to Timestream for details)
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_dimension_name_for_telegraf_measurement_name = "namespace"

  ## Only valid and optional if create_table_if_not_exists = true
  ## Specifies the Timestream table tags.
  ## Check Timestream documentation for more details
  # create_table_tags = { "foo" = "bar", "environment" = "dev"}

  ## Specify the maximum number of parallel go routines to ingest/write data
  ## If not specified, defaulted to 1 go routines
  max_write_go_routines = 25

  ## Please see README.md to know how line protocol data is mapped to Timestream
  ##

输入和输出集成示例

Salesforce

  1. 监控 API 限制使用情况以进行扩展决策:使用 Salesforce 插件随时间推移跟踪 API 限制使用情况,并就何时扩展 Salesforce 资源做出明智的决策。通过可视化 API 消耗模式,组织可以预测高峰使用时间,从而使其能够主动调整其基础设施或根据需要请求更高的限制。这种优化可以提高性能并减少关键业务运营期间的停机时间。

  2. API 限制超出的自动化警报系统:将此插件与通知系统集成,以便在 API 使用量接近临界限制时向团队发出警报。此设置不仅确保团队主动收到通知以防止中断,还有助于维护运营连续性和客户满意度。可以将警报配置为触发自动脚本,以调整负载或相应地通知利益相关者。

  3. 多个 Salesforce 的比较分析:利用 Salesforce 输入插件收集来自不同部门或业务部门的多个 Salesforce 实例的指标。通过集中此数据,组织可以执行比较分析,以识别可能比其他部门更频繁地超出其 API 限制的部门。这允许进行有针对性的讨论和策略,以平衡整个组织的 API 使用情况,从而实现更好的资源分配和效率。

AWS Timestream

  1. 物联网数据指标:使用 Timestream 插件将来自物联网设备的实时指标发送到 Timestream,从而可以快速分析和可视化传感器数据。通过将设备读数组织成时间序列格式,用户可以跟踪趋势、识别异常并根据设备性能简化运营决策。

  2. 应用程序性能监控:将 Timestream 与应用程序监控工具结合使用,以随时间推移发送有关服务性能的指标。这种集成使工程师能够对应用程序性能进行历史分析,将其与业务指标相关联,并根据随时间推移查看的使用模式优化资源分配。

  3. 自动化数据归档:配置 Timestream 插件以将数据写入 Timestream,同时管理保留期。此设置可以自动化归档策略,确保根据预定义的标准保留较旧的数据。这对于合规性和历史分析特别有用,使企业能够以最少的人工干预来维护其数据生命周期。

  4. 多应用程序指标聚合:利用 Timestream 插件将来自多个应用程序的指标聚合到 Timestream 中。通过创建性能指标的统一数据库,组织可以获得跨各种服务的整体见解,提高系统范围性能的可见性,并促进跨应用程序故障排除。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成