RabbitMQ 和 Splunk 集成

强大的性能和简单的集成,由 Telegraf 驱动,InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 RabbitMQ 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。使用 InfluxDB,第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件从 RabbitMQ 服务器读取指标,提供对消息传递系统的性能和状态的重要见解。

此输出插件有助于将 Telegraf 收集的指标通过 HTTP 事件收集器直接流式传输到 Splunk,从而轻松集成到 Splunk 强大的分析平台。

集成详情

RabbitMQ

Telegraf 的 RabbitMQ 插件允许用户通过 RabbitMQ 管理插件从 RabbitMQ 服务器收集指标。此功能对于监控 RabbitMQ 实例的性能和健康状况至关重要,这些实例广泛用于各种应用程序中的消息队列和处理。该插件提供对关键 RabbitMQ 指标的全面见解,包括消息速率、队列深度和节点健康统计信息,从而使操作员能够维护其消息传递基础设施的最佳性能和稳健性。此外,它还支持 secret-stores 以安全地管理敏感凭据,从而使与现有系统的集成更加顺畅。配置选项允许灵活地指定要监控的节点、队列和交换机,为各种部署场景提供有价值的适应性。

Splunk

使用 Telegraf 可以轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。利用 HTTP 输出插件和专门的 Splunk 指标序列化器,此配置确保高效地将数据摄取到 Splunk 的指标索引中。HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全、监控和分析工作负载提供关键功能。Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,优化指标摄取并实现即时可操作的见解。

配置

RabbitMQ

[[inputs.rabbitmq]]
  ## Management Plugin url. (default: http://localhost:15672)
  # url = "http://localhost:15672"
  ## Tag added to rabbitmq_overview series; deprecated: use tags
  # name = "rmq-server-1"
  ## Credentials
  # username = "guest"
  # password = "guest"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional request timeouts
  ## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
  ## for a server's response headers after fully writing the request.
  # header_timeout = "3s"
  ##
  ## client_timeout specifies a time limit for requests made by this client.
  ## Includes connection time, any redirects, and reading the response body.
  # client_timeout = "4s"

  ## A list of nodes to gather as the rabbitmq_node measurement. If not
  ## specified, metrics for all nodes are gathered.
  # nodes = ["rabbit@node1", "rabbit@node2"]

  ## A list of queues to gather as the rabbitmq_queue measurement. If not
  ## specified, metrics for all queues are gathered.
  ## Deprecated in 1.6: Use queue_name_include instead.
  # queues = ["telegraf"]

  ## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
  ## specified, metrics for all exchanges are gathered.
  # exchanges = ["telegraf"]

  ## Metrics to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all metrics
  ## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
  # metric_include = []
  # metric_exclude = []

  ## Queues to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all queues
  # queue_name_include = []
  # queue_name_exclude = []

  ## Federation upstreams to include and exclude specified as an array of glob
  ## pattern strings.  Federation links can also be limited by the queue and
  ## exchange filters.
  # federation_upstream_include = []
  # federation_upstream_exclude = []

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

输入和输出集成示例

RabbitMQ

  1. 监控队列性能指标:使用 RabbitMQ 插件来跟踪队列性能随时间的变化。这涉及到设置监控仪表板,以可视化关键队列指标,例如消息速率、消费者数量和消息传递速率。借助这些信息,团队可以通过分析趋势并根据数据做出关于扩展或优化其 RabbitMQ 配置的明智决策,从而主动解决任何瓶颈或性能问题。

  2. 系统健康状况警报:将 RabbitMQ 插件与警报系统集成,以通知运维团队 RabbitMQ 实例中潜在的问题。例如,如果未确认消息的数量达到临界阈值,或者队列变得不堪重负,则可以触发警报,从而可以立即进行调查和快速补救措施,以维护消息流的健康状况。

  3. 分析消息处理指标:使用该插件收集关于消息处理性能的详细指标,例如消息发布、确认和重新传递的速率。通过分析这些指标,团队可以评估其消息消费者应用程序的效率,并在必要时对配置或代码进行调整,从而提高整体系统吞吐量和弹性。

  4. 跨系统数据集成:利用 RabbitMQ 插件收集的指标来集成 RabbitMQ 和其他系统或服务之间的数据流。例如,使用收集的指标来驱动自动化工作流程或分析管道,这些管道利用在 RabbitMQ 中处理的消息,使组织能够优化工作流程并提高其生态系统中的数据敏捷性。

Splunk

  1. 实时安全分析:利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk。组织可以通过关联跨系统的数据流立即检测到威胁,从而显著缩短检测和响应时间。

  2. 多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营情报。这种统一的监控使团队能够快速检测性能问题并简化云资源管理。

  3. 动态容量规划:部署插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk。利用 Splunk 的分析能力,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。

  4. 自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。Telegraf 收集的指标触发实时警报和自动化修复脚本,确保快速解决问题并保持系统高可用性。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。使用 InfluxDB,第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为 DynamoDB 提供检查点功能,以实现可靠的消息处理。

查看集成