RabbitMQ 和 PostgreSQL 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取以及高可用性,您可能需要考虑 RabbitMQ 和 InfluxDB 的集成方案。

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

此插件从 RabbitMQ 服务器读取指标,提供对消息传递系统的性能和状态的基本洞察。

Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库模式。

集成详情

RabbitMQ

Telegraf 的 RabbitMQ 插件允许用户通过 RabbitMQ 管理插件从 RabbitMQ 服务器收集指标。此功能对于监控 RabbitMQ 实例的性能和健康状况至关重要,RabbitMQ 实例广泛用于各种应用程序中的消息队列和处理。该插件提供对关键 RabbitMQ 指标的全面洞察,包括消息速率、队列深度和节点健康统计信息,从而使操作员能够维护其消息传递基础设施的最佳性能和稳健性。此外,它还支持密钥存储安全地管理敏感凭据,从而使与现有系统的集成更加顺畅。配置选项允许灵活地指定要监控的节点、队列和交换机,为不同的部署场景提供有价值的适应性。

PostgreSQL

PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容数据库,通过自动更新缺失的列,为模式管理提供强大的支持。该插件旨在促进与监控解决方案的集成,允许用户高效地存储和管理时序数据。它为连接设置、并发和错误处理提供可配置的选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展支持无符号整数数据类型。

配置

RabbitMQ

[[inputs.rabbitmq]]
  ## Management Plugin url. (default: http://localhost:15672)
  # url = "http://localhost:15672"
  ## Tag added to rabbitmq_overview series; deprecated: use tags
  # name = "rmq-server-1"
  ## Credentials
  # username = "guest"
  # password = "guest"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Optional request timeouts
  ## ResponseHeaderTimeout, if non-zero, specifies the amount of time to wait
  ## for a server's response headers after fully writing the request.
  # header_timeout = "3s"
  ##
  ## client_timeout specifies a time limit for requests made by this client.
  ## Includes connection time, any redirects, and reading the response body.
  # client_timeout = "4s"

  ## A list of nodes to gather as the rabbitmq_node measurement. If not
  ## specified, metrics for all nodes are gathered.
  # nodes = ["rabbit@node1", "rabbit@node2"]

  ## A list of queues to gather as the rabbitmq_queue measurement. If not
  ## specified, metrics for all queues are gathered.
  ## Deprecated in 1.6: Use queue_name_include instead.
  # queues = ["telegraf"]

  ## A list of exchanges to gather as the rabbitmq_exchange measurement. If not
  ## specified, metrics for all exchanges are gathered.
  # exchanges = ["telegraf"]

  ## Metrics to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all metrics
  ## Currently the following metrics are supported: "exchange", "federation", "node", "overview", "queue"
  # metric_include = []
  # metric_exclude = []

  ## Queues to include and exclude. Globs accepted.
  ## Note that an empty array for both will include all queues
  # queue_name_include = []
  # queue_name_exclude = []

  ## Federation upstreams to include and exclude specified as an array of glob
  ## pattern strings.  Federation links can also be limited by the queue and
  ## exchange filters.
  # federation_upstream_include = []
  # federation_upstream_exclude = []

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

RabbitMQ

  1. 监控队列性能指标:使用 RabbitMQ 插件来跟踪队列性能随时间的变化。这包括设置监控仪表板,以可视化关键队列指标,例如消息速率、消费者数量和消息传递速率。借助此信息,团队可以通过分析趋势并根据数据做出关于扩展或优化其 RabbitMQ 配置的明智决策,从而主动解决任何瓶颈或性能问题。

  2. 系统健康状况警报:将 RabbitMQ 插件与警报系统集成,以通知运营团队 RabbitMQ 实例中潜在的问题。例如,如果未确认消息的数量达到临界阈值,或者队列变得不堪重负,则可以触发警报,从而可以立即进行调查并迅速采取补救措施,以维护消息流的健康状况。

  3. 分析消息处理指标:使用该插件收集有关消息处理性能的详细指标,例如已发布、已确认和已重新传递的消息速率。通过分析这些指标,团队可以评估其消息消费者应用程序的效率,并在必要时调整配置或代码,从而提高整体系统吞吐量和弹性。

  4. 跨系统数据集成:利用 RabbitMQ 插件收集的指标来集成 RabbitMQ 和其他系统或服务之间的数据流。例如,使用收集的指标来驱动自动化工作流程或分析管道,这些管道利用 RabbitMQ 中处理的消息,使组织能够优化工作流程并提高其生态系统中的数据敏捷性。

PostgreSQL

  1. 使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而可以使用复杂查询进行实时分析。这种设置可以帮助数据科学家和分析师发现模式和趋势,因为他们可以在多个表中操作关系数据,同时利用 PostgreSQL 强大的查询优化功能。具体来说,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常隐藏在嵌入式系统中的见解。

  2. 与 TimescaleDB 集成以进行时序数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效地处理和分析时序数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。这种集成允许用户对大量的时序数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,确保指标分析的可靠性和效率。

  3. 数据版本控制和历史分析:实施使用 PostgreSQL 插件来维护指标不同版本的策略。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而可以轻松进行历史分析。这种方法不仅提供对数据演变的洞察,还有助于遵守数据保留策略,确保数据集的历史完整性保持不变。

  4. 动态模式管理以适应不断变化的指标:使用该插件的模板功能来创建动态变化的模式,以响应指标变化。此用例允许组织在其指标演变时调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷数据管理实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成