目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 使用 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
此插件通过 gRPC 接收来自 OpenTelemetry 客户端和代理的跟踪、指标和日志,从而实现对应用程序的全面可观测性。
此输出插件有助于通过 HTTP Event Collector 将 Telegraf 收集的指标直接流式传输到 Splunk,从而轻松集成到 Splunk 强大的分析平台。
集成详情
OpenTelemetry
OpenTelemetry 插件旨在通过 gRPC 接收来自实施 OpenTelemetry 的客户端和代理的遥测数据,例如跟踪、指标和日志。 此插件启动一个 gRPC 服务,该服务侦听传入的遥测数据,使其与在定义的间隔收集指标的标准插件不同。 OpenTelemetry 生态系统通过提供一种供应商中立的方式来检测、生成、收集和导出遥测数据,从而帮助开发人员观察和理解其应用程序的性能。 此插件的主要功能包括可自定义的连接超时、传入数据的可调最大消息大小以及用于指定跨度、日志和配置文件维度以标记传入指标的选项。 凭借这种灵活性,组织可以定制其遥测数据收集,以满足精确的可观测性要求,并确保将数据无缝集成到 InfluxDB 等系统中。
Splunk
使用 Telegraf 可以轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。 利用 HTTP 输出插件与专门的 Splunk 指标序列化器相结合,此配置可确保将数据高效地摄取到 Splunk 的指标索引中。 HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监控和分析工作负载提供关键功能。 Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,优化指标摄取并实现即时可操作的见解。
配置
OpenTelemetry
[[inputs.opentelemetry]]
## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
## address:port
# service_address = "0.0.0.0:4317"
## Override the default (5s) new connection timeout
# timeout = "5s"
## gRPC Maximum Message Size
# max_msg_size = "4MB"
## Override the default span attributes to be used as line protocol tags.
## These are always included as tags:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# span_dimensions = ["service.name", "span.name"]
## Override the default log record attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
## matches the span_dimensions value.
# log_record_dimensions = ["service.name"]
## Override the default profile attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - profile_id
## - address
## - sample
## - sample_name
## - sample_unit
## - sample_type
## - sample_type_unit
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# profile_dimensions = []
## Override the default (prometheus-v1) metrics schema.
## Supports: "prometheus-v1", "prometheus-v2"
## For more information about the alternatives, read the Prometheus input
## plugin notes.
# metrics_schema = "prometheus-v1"
## Optional TLS Config.
## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
##
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key.
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
Splunk
[[outputs.http]]
## Splunk HTTP Event Collector endpoint
url = "https://splunk.example.com:8088/services/collector"
## HTTP method to use
method = "POST"
## Splunk authentication token
headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}
## Serializer for formatting metrics specifically for Splunk
data_format = "splunkmetric"
## Optional parameters
# timeout = "5s"
# insecure_skip_verify = false
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
输入和输出集成示例
OpenTelemetry
-
跨服务统一监控:使用 OpenTelemetry 插件收集和整合来自 Kubernetes 环境中各种微服务的遥测数据。 通过使用 OpenTelemetry 检测每个服务,您可以利用此插件实时收集应用程序性能和依赖关系的整体视图,从而更快地进行故障排除并提高复杂系统的可靠性。
-
通过跟踪增强调试:实施此插件以捕获流经多个服务的请求的端到端跟踪。 例如,当用户发起一个触发多个后端服务的事务时,OpenTelemetry 插件可以记录详细的跟踪,突出显示性能瓶颈,从而为开发人员提供必要的见解来调试问题并优化他们的代码。
-
动态负载测试和性能监控:在负载测试阶段,通过在模拟更高负载下收集实时指标和跟踪,来利用此插件的功能。 这种方法有助于评估应用程序组件的弹性,并抢先识别潜在的性能下降,从而确保在生产环境中获得流畅的用户体验。
-
集成日志记录和指标以进行实时监控:将 OpenTelemetry 插件与日志记录框架结合使用,以收集实时日志以及指标数据,从而创建一个强大的可观测性平台。 例如,将其集成到 CI/CD 管道中以监控构建和部署,同时收集有助于实时诊断故障或性能问题的日志。
Splunk
-
实时安全分析:利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。 组织可以通过关联跨系统的数据流立即检测到威胁,从而显着缩短检测和响应时间。
-
多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营智能。 这种统一的监控使团队能够快速检测性能问题并简化云资源管理。
-
动态容量规划:部署该插件以持续将来自容器编排平台(如 Kubernetes)的资源指标推送到 Splunk 中。 利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。
-
自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。 Telegraf 收集的指标会触发实时警报和自动化修复脚本,从而确保快速解决问题并保持高系统可用性。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 使用 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法