目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法
输入和输出集成概述
此插件通过 gRPC 接收来自 OpenTelemetry 客户端和代理的跟踪、指标和日志,从而实现对应用程序的全面可观测性。
OpenTSDB 插件有助于 Telegraf 与 OpenTSDB 的集成,允许用户无缝地将时间序列指标推送到 OpenTSDB 后端。
集成详细信息
OpenTelemetry
OpenTelemetry 插件旨在通过 gRPC 接收来自客户端和代理的遥测数据,例如跟踪、指标和日志,这些客户端和代理实现了 OpenTelemetry。 此插件启动一个 gRPC 服务,用于侦听传入的遥测数据,这使其与以定义的间隔收集指标的标准插件不同。 OpenTelemetry 生态系统通过提供一种供应商中立的方式来检测、生成、收集和导出遥测数据,从而帮助开发人员观察和了解其应用程序的性能。 此插件的主要功能包括可自定义的连接超时、传入数据的可调整最大消息大小以及用于指定跨度、日志和配置文件维度以标记传入指标的选项。 凭借这种灵活性,组织可以定制其遥测数据收集,以满足精确的可观测性要求,并确保将数据无缝集成到 InfluxDB 等系统中。
OpenTSDB
OpenTSDB 插件旨在通过 telnet 或 HTTP 模式将指标发送到 OpenTSDB 实例。 随着 OpenTSDB 2.0 的推出,发送指标的推荐方法是通过 HTTP API,它允许通过配置“http_batch_size”来批量处理指标。 该插件支持多个配置选项,包括指标前缀、服务器主机和端口规范、反向代理的 URI 路径自定义以及用于诊断与 OpenTSDB 通信问题的调试选项。 此插件在生成时间序列数据并且需要将其高效存储在可扩展的时间序列数据库(如 OpenTSDB)中的情况下尤其有用,使其适用于广泛的监控和分析应用程序。
配置
OpenTelemetry
[[inputs.opentelemetry]]
## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
## address:port
# service_address = "0.0.0.0:4317"
## Override the default (5s) new connection timeout
# timeout = "5s"
## gRPC Maximum Message Size
# max_msg_size = "4MB"
## Override the default span attributes to be used as line protocol tags.
## These are always included as tags:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# span_dimensions = ["service.name", "span.name"]
## Override the default log record attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - trace ID
## - span ID
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
## matches the span_dimensions value.
# log_record_dimensions = ["service.name"]
## Override the default profile attributes to be used as line protocol tags.
## These are always included as tags, if available:
## - profile_id
## - address
## - sample
## - sample_name
## - sample_unit
## - sample_type
## - sample_type_unit
## Common attributes can be found here:
## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
# profile_dimensions = []
## Override the default (prometheus-v1) metrics schema.
## Supports: "prometheus-v1", "prometheus-v2"
## For more information about the alternatives, read the Prometheus input
## plugin notes.
# metrics_schema = "prometheus-v1"
## Optional TLS Config.
## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
##
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections.
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key.
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
OpenTSDB
[[outputs.opentsdb]]
## prefix for metrics keys
prefix = "my.specific.prefix."
## DNS name of the OpenTSDB server
## Using "opentsdb.example.com" or "tcp://opentsdb.example.com" will use the
## telnet API. "http://opentsdb.example.com" will use the Http API.
host = "opentsdb.example.com"
## Port of the OpenTSDB server
port = 4242
## Number of data points to send to OpenTSDB in Http requests.
## Not used with telnet API.
http_batch_size = 50
## URI Path for Http requests to OpenTSDB.
## Used in cases where OpenTSDB is located behind a reverse proxy.
http_path = "/api/put"
## Debug true - Prints OpenTSDB communication
debug = false
## Separator separates measurement name from field
separator = "_"
输入和输出集成示例
OpenTelemetry
-
跨服务的统一监控:使用 OpenTelemetry 插件来收集和整合 Kubernetes 环境中各种微服务的遥测数据。 通过使用 OpenTelemetry 检测每个服务,您可以利用此插件来收集应用程序性能和依赖关系的整体视图,从而更快地进行故障排除并提高复杂系统的可靠性。
-
使用跟踪增强调试:实施此插件以捕获流经多个服务的请求的端到端跟踪。 例如,当用户发起一个事务,该事务触发多个后端服务时,OpenTelemetry 插件可以记录详细的跟踪,突出显示性能瓶颈,从而为开发人员提供调试问题和优化代码所需的见解。
-
动态负载测试和性能监控:通过在模拟更高负载下收集实时指标和跟踪,在负载测试阶段利用此插件的功能。 这种方法有助于评估应用程序组件的弹性,并抢先识别潜在的性能下降,从而确保流畅的生产用户体验。
-
用于实时监控的集成日志记录和指标:将 OpenTelemetry 插件与日志记录框架结合使用,以收集实时日志以及指标数据,从而创建一个强大的可观测性平台。 例如,将其集成到 CI/CD 管道中以监控构建和部署,同时收集有助于实时诊断故障或性能问题的日志。
OpenTSDB
-
实时基础设施监控:利用 OpenTSDB 插件来收集和存储来自各种基础设施组件的指标。 通过配置插件将指标推送到 OpenTSDB,组织可以集中查看其基础设施的健康状况和长期性能。
-
自定义应用程序指标跟踪:将 OpenTSDB 插件集成到自定义应用程序中,以跟踪关键绩效指标 (KPI),例如响应时间、错误率和用户交互。 这种设置允许开发人员和产品团队可视化应用程序性能趋势并做出数据驱动的决策。
-
自动化异常检测:结合机器学习算法利用该插件来自动检测发送到 OpenTSDB 的时间序列数据中的异常。 通过持续监控传入的指标,系统可以训练模型,以便在潜在问题影响应用程序性能之前向用户发出警报。
-
历史数据分析:使用 OpenTSDB 插件来存储和分析历史性能数据,以进行容量规划和趋势分析。 这提供了对系统随时间推移的行为的宝贵见解,帮助团队了解使用模式并为未来的增长做好准备。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法