OpenTelemetry 和 IoTDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 OpenTelemetry 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。使用 InfluxDB,排名第一的、旨在与 Telegraf 一起扩展的时序平台。

查看入门方法

输入和输出集成概述

此插件通过 gRPC 接收来自 OpenTelemetry 客户端和代理的跟踪、指标和日志,从而实现对应用程序的全面可观测性。

此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。

集成详情

OpenTelemetry

OpenTelemetry 插件旨在通过 gRPC 接收来自实施 OpenTelemetry 的客户端和代理的遥测数据,例如跟踪、指标和日志。此插件启动一个 gRPC 服务,监听传入的遥测数据,这使其与按定义的时间间隔收集指标的标准插件不同。 OpenTelemetry 生态系统通过提供一种厂商中立的方式来检测、生成、收集和导出遥测数据,帮助开发人员观察和理解其应用程序的性能。此插件的主要功能包括可自定义的连接超时、传入数据的可调整最大消息大小,以及用于指定跨度、日志和配置文件维度以标记传入指标的选项。凭借这种灵活性,组织可以定制其遥测数据收集,以满足精确的可观测性要求,并确保数据无缝集成到 InfluxDB 等系统中。

IoTDB

Apache IoTDB(物联网数据库)是一种 IoT 原生数据库,具有高性能的数据管理和分析能力,可部署在边缘和云端。其轻量级架构、高性能和丰富的功能集使其非常适合海量数据存储、高速数据摄取以及 IoT 工业领域的复杂分析。 IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,进一步增强了其处理大规模数据和复杂处理任务的能力。

配置

OpenTelemetry

[[inputs.opentelemetry]]
  ## Override the default (0.0.0.0:4317) destination OpenTelemetry gRPC service
  ## address:port
  # service_address = "0.0.0.0:4317"

  ## Override the default (5s) new connection timeout
  # timeout = "5s"

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Override the default span attributes to be used as line protocol tags.
  ## These are always included as tags:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # span_dimensions = ["service.name", "span.name"]

  ## Override the default log record attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - trace ID
  ## - span ID
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  ## When using InfluxDB for both logs and traces, be certain that log_record_dimensions
  ## matches the span_dimensions value.
  # log_record_dimensions = ["service.name"]

  ## Override the default profile attributes to be used as line protocol tags.
  ## These are always included as tags, if available:
  ## - profile_id
  ## - address
  ## - sample
  ## - sample_name
  ## - sample_unit
  ## - sample_type
  ## - sample_type_unit
  ## Common attributes can be found here:
  ## - https://github.com/open-telemetry/opentelemetry-collector/tree/main/semconv
  # profile_dimensions = []

  ## Override the default (prometheus-v1) metrics schema.
  ## Supports: "prometheus-v1", "prometheus-v2"
  ## For more information about the alternatives, read the Prometheus input
  ## plugin notes.
  # metrics_schema = "prometheus-v1"

  ## Optional TLS Config.
  ## For advanced options: https://github.com/influxdata/telegraf/blob/v1.18.3/docs/TLS.md
  ##
  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections.
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
  ## Add service certificate and key.
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

输入和输出集成示例

OpenTelemetry

  1. 跨服务的统一监控:使用 OpenTelemetry 插件来收集和整合 Kubernetes 环境中各种微服务的遥测数据。通过使用 OpenTelemetry 检测每个服务,您可以利用此插件来收集应用程序性能和依赖关系的整体视图,从而更快地进行故障排除并提高复杂系统的可靠性。

  2. 通过跟踪增强调试:实施此插件以捕获流经多个服务的请求的端到端跟踪。例如,当用户发起一个事务,触发多个后端服务时,OpenTelemetry 插件可以记录详细的跟踪,突出显示性能瓶颈,从而为开发人员提供必要的见解来调试问题并优化其代码。

  3. 动态负载测试和性能监控:在负载测试阶段,通过收集模拟更高负载下的实时指标和跟踪,来利用此插件的功能。这种方法有助于评估应用程序组件的弹性,并主动识别潜在的性能下降,从而确保在生产环境中获得流畅的用户体验。

  4. 用于实时监控的集成日志记录和指标:将 OpenTelemetry 插件与日志记录框架结合使用,以收集实时日志以及指标数据,从而创建一个强大的可观测性平台。例如,将其集成到 CI/CD 管道中以监控构建和部署,同时收集有助于实时诊断故障或性能问题的日志。

IoTDB

  1. 实时物联网监控:利用 IoTDB 插件来收集来自各种 IoT 设备的传感器数据,并将其保存在 Apache IoTDB 后端中,从而实现对环境条件(如温度和湿度)的实时监控。此用例使组织能够分析随时间变化的趋势,并根据历史数据做出明智的决策,同时还可以利用 IoTDB 高效的存储和查询功能。

  2. 智能农业数据收集:使用 IoTDB 插件来收集来自部署在田地中的智能农业传感器的指标。通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以访问有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理水平。

  3. 能源消耗分析:利用 IoTDB 插件来跟踪来自公用事业网络中智能电表的能源消耗指标。此集成支持分析以识别使用高峰并预测未来的消耗模式,最终支持节能措施和改进的公用事业管理。

  4. 自动化工业设备监控:使用此插件来收集制造工厂中机械的操作指标,并将其存储在 IoTDB 中以进行分析。此设置可以帮助识别效率低下、预测性维护需求和操作异常,从而确保最佳性能并最大限度地减少意外停机时间。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。使用 InfluxDB,排名第一的、旨在与 Telegraf 一起扩展的时序平台。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 进行检查点操作的功能,以实现可靠的消息处理。

查看集成