OpenStack 和 Splunk 集成

易于集成的强大性能,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是大规模实时查询的推荐配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 OpenStack 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。通过 InfluxDB,这个排名第一的时序平台,它旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

此插件从重要的 OpenStack 服务收集指标,从而促进云基础设施的监控和管理。

此输出插件有助于将 Telegraf 收集的指标直接流式传输到 Splunk 中,通过 HTTP Event Collector,实现与 Splunk 强大的分析平台的轻松集成。

集成详情

OpenStack

OpenStack 插件允许用户从各种 OpenStack 服务(如 CINDER、GLANCE、HEAT、KEYSTONE、NEUTRON 和 NOVA)收集性能指标。它支持多个 OpenStack API 来获取与这些服务相关的关键指标,从而实现对云资源的全面监控和管理。随着组织越来越多地采用 OpenStack 作为其云基础设施,此插件在提供对整个云环境中的资源使用情况、可用性和性能的洞察方面发挥着至关重要的作用。配置选项允许自定义轮询间隔和过滤不需要的标签,以优化性能和基数。

Splunk

使用 Telegraf 可以轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。通过利用 HTTP 输出插件和专门的 Splunk 指标序列化器,此配置可确保将数据高效摄取到 Splunk 的指标索引中。HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监控和分析工作负载提供关键功能。Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,从而优化指标摄取并实现即时可操作的见解。

配置

OpenStack

[[inputs.openstack]]
  ## The recommended interval to poll is '30m'

  ## The identity endpoint to authenticate against and get the service catalog from.
  authentication_endpoint = "https://my.openstack.cloud:5000"

  ## The domain to authenticate against when using a V3 identity endpoint.
  # domain = "default"

  ## The project to authenticate as.
  # project = "admin"

  ## User authentication credentials. Must have admin rights.
  username = "admin"
  password = "password"

  ## Available services are:
  ## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
  ## "networks", "nova_services", "ports", "projects", "servers",
  ## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
  ## "volumes"
  # enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]

  ## Query all instances of all tenants for the volumes and server services
  ## NOTE: Usually this is only permitted for administrators!
  # query_all_tenants = true

  ## output secrets (such as adminPass(for server) and UserID(for volume)).
  # output_secrets = false

  ## Amount of time allowed to complete the HTTP(s) request.
  # timeout = "5s"

  ## HTTP Proxy support
  # http_proxy_url = ""

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Options for tags received from Openstack
  # tag_prefix = "openstack_tag_"
  # tag_value = "true"

  ## Timestamp format for timestamp data received from Openstack.
  ## If false format is unix nanoseconds.
  # human_readable_timestamps = false

  ## Measure Openstack call duration
  # measure_openstack_requests = false

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

输入和输出集成示例

OpenStack

  1. 跨云管理:利用 OpenStack 插件从单个 Telegraf 实例监控和管理多个 OpenStack 云。通过聚合不同云中的指标,组织可以深入了解资源利用率,并优化其云架构以实现成本和性能的优化。

  2. 基于指标的自动扩展:将从 OpenStack 收集的指标集成到自动扩展解决方案中。例如,如果插件检测到特定服务的性能下降,它可以触发自动扩展规则以启动额外的实例,从而确保系统性能在不同的工作负载下保持最佳状态。

  3. 性能监控仪表板:使用 OpenStack Telegraf 插件收集的数据来支持实时监控仪表板。此设置提供了来自 OpenStack 服务的关键指标的可视化,使利益相关者能够快速识别趋势、查明问题,并在管理其云基础设施时做出数据驱动的决策。

  4. 服务可用性报告和分析:通过利用从各种 OpenStack 服务收集的指标,团队可以生成有关服务可用性和随时间推移的性能的详细报告。此信息可以帮助识别重复出现的问题,改进服务交付,并就基础设施或服务配置的变更做出明智的决策。

Splunk

  1. 实时安全分析:利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。组织可以通过关联跨系统的数据流来立即检测威胁,从而显着缩短检测和响应时间。

  2. 多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营情报。这种统一的监控使团队能够快速检测性能问题并简化云资源管理。

  3. 动态容量规划:部署插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。

  4. 自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。Telegraf 收集的指标会触发实时警报和自动化修复脚本,从而确保快速解决问题并保持高系统可用性。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。通过 InfluxDB,这个排名第一的时序平台,它旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成