目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 协同扩展的时序平台。
查看入门方法
输入和输出集成概述
此插件从重要的 OpenStack 服务收集指标,从而促进云基础设施的监控和管理。
Prometheus 输出插件使 Telegraf 能够在 HTTP 端点上公开指标,以供 Prometheus 服务器抓取。 此集成允许用户以 Prometheus 可以有效处理的格式,从各种来源收集和聚合指标。
集成详细信息
OpenStack
OpenStack 插件允许用户从各种 OpenStack 服务(如 CINDER、GLANCE、HEAT、KEYSTONE、NEUTRON 和 NOVA)收集性能指标。 它支持多个 OpenStack API,以获取与这些服务相关的关键指标,从而实现对云资源的全面监控和管理。 随着越来越多的组织采用 OpenStack 作为其云基础设施,此插件在提供对整个云环境中的资源使用情况、可用性和性能的洞察方面发挥着至关重要的作用。 配置选项允许自定义轮询间隔和过滤不需要的标签,以优化性能和基数。
Prometheus
此插件有助于与 Prometheus 集成,Prometheus 是一种著名的开源监控和警报工具包,专为大规模环境中的可靠性和效率而设计。 通过充当 Prometheus 客户端,它允许用户通过 HTTP 服务器公开定义的指标集,Prometheus 可以按指定的间隔抓取这些指标。 此插件在监控各种系统中发挥着至关重要的作用,它允许这些系统以标准化格式发布性能指标,从而可以广泛了解系统健康状况和行为。 主要功能包括支持配置各种端点、启用 TLS 以进行安全通信以及 HTTP 基本身份验证选项。 该插件还可以与全局 Telegraf 配置设置无缝集成,支持广泛的自定义以适应特定的监控需求。 这促进了在不同系统必须有效通信性能数据的环境中的互操作性。 利用 Prometheus 的指标格式,它可以通过高级配置(如指标过期和收集器控制)实现灵活的指标管理,从而为监控和警报工作流程提供完善的解决方案。
配置
OpenStack
[[inputs.openstack]]
## The recommended interval to poll is '30m'
## The identity endpoint to authenticate against and get the service catalog from.
authentication_endpoint = "https://my.openstack.cloud:5000"
## The domain to authenticate against when using a V3 identity endpoint.
# domain = "default"
## The project to authenticate as.
# project = "admin"
## User authentication credentials. Must have admin rights.
username = "admin"
password = "password"
## Available services are:
## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
## "networks", "nova_services", "ports", "projects", "servers",
## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
## "volumes"
# enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]
## Query all instances of all tenants for the volumes and server services
## NOTE: Usually this is only permitted for administrators!
# query_all_tenants = true
## output secrets (such as adminPass(for server) and UserID(for volume)).
# output_secrets = false
## Amount of time allowed to complete the HTTP(s) request.
# timeout = "5s"
## HTTP Proxy support
# http_proxy_url = ""
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Options for tags received from Openstack
# tag_prefix = "openstack_tag_"
# tag_value = "true"
## Timestamp format for timestamp data received from Openstack.
## If false format is unix nanoseconds.
# human_readable_timestamps = false
## Measure Openstack call duration
# measure_openstack_requests = false
Prometheus
[[outputs.prometheus_client]]
## Address to listen on.
## ex:
## listen = ":9273"
## listen = "vsock://:9273"
listen = ":9273"
## Maximum duration before timing out read of the request
# read_timeout = "10s"
## Maximum duration before timing out write of the response
# write_timeout = "10s"
## Metric version controls the mapping from Prometheus metrics into Telegraf metrics.
## See "Metric Format Configuration" in plugins/inputs/prometheus/README.md for details.
## Valid options: 1, 2
# metric_version = 1
## Use HTTP Basic Authentication.
# basic_username = "Foo"
# basic_password = "Bar"
## If set, the IP Ranges which are allowed to access metrics.
## ex: ip_range = ["192.168.0.0/24", "192.168.1.0/30"]
# ip_range = []
## Path to publish the metrics on.
# path = "/metrics"
## Expiration interval for each metric. 0 == no expiration
# expiration_interval = "60s"
## Collectors to enable, valid entries are "gocollector" and "process".
## If unset, both are enabled.
# collectors_exclude = ["gocollector", "process"]
## Send string metrics as Prometheus labels.
## Unless set to false all string metrics will be sent as labels.
# string_as_label = true
## If set, enable TLS with the given certificate.
# tls_cert = "/etc/ssl/telegraf.crt"
# tls_key = "/etc/ssl/telegraf.key"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Export metric collection time.
# export_timestamp = false
## Specify the metric type explicitly.
## This overrides the metric-type of the Telegraf metric. Globbing is allowed.
# [outputs.prometheus_client.metric_types]
# counter = []
# gauge = []
输入和输出集成示例
OpenStack
-
跨云管理:利用 OpenStack 插件从单个 Telegraf 实例监控和管理多个 OpenStack 云。 通过聚合不同云中的指标,组织可以深入了解资源利用率,并优化其云架构以实现成本和性能的平衡。
-
基于指标的自动扩展:将从 OpenStack 收集的指标集成到自动扩展解决方案中。 例如,如果插件检测到特定服务的性能下降,它可以触发自动扩展规则以启动其他实例,从而确保系统性能在不同的工作负载下保持最佳状态。
-
性能监控仪表板:使用 OpenStack Telegraf 插件收集的数据来支持实时监控仪表板。 此设置提供来自 OpenStack 服务的关键指标的可视化,使利益相关者能够快速识别趋势、查明问题,并在管理其云基础设施时做出数据驱动的决策。
-
服务可用性报告和分析:通过利用从各种 OpenStack 服务收集的指标,团队可以生成有关服务可用性和随时间推移的性能的详细报告。 此信息可以帮助识别重复出现的问题、改进服务交付,并就基础设施或服务配置的更改做出明智的决策。
Prometheus
-
监控多云部署:利用 Prometheus 插件从跨多个云提供商运行的应用程序收集指标。 这种情况允许团队通过单个 Prometheus 实例集中监控,该实例从不同的环境抓取指标,从而提供跨混合基础设施的统一性能指标视图。 它简化了报告和警报,提高了运营效率,而无需复杂的集成。
-
增强微服务可见性:实施该插件以公开 Kubernetes 集群中各种微服务的指标。 通过使用 Prometheus,团队可以实时可视化服务指标、识别瓶颈并维护系统运行状况检查。 此设置支持基于从收集的指标生成的洞察,进行自适应扩展和资源利用率优化。 它增强了对服务交互进行故障排除的能力,从而显著提高了微服务架构的弹性。
-
电子商务中的实时异常检测:通过将此插件与 Prometheus 结合使用,电子商务平台可以监控关键绩效指标,例如响应时间和错误率。 将异常检测算法与抓取的指标集成在一起,可以识别指示潜在问题的意外模式,例如突发的流量峰值或后端服务故障。 这种主动监控可以提高业务连续性和运营效率,最大限度地减少潜在的停机时间,同时确保服务的可靠性。
-
API 的性能指标报告:利用 Prometheus 输出插件收集和报告 API 性能指标,然后可以在 Grafana 仪表板中可视化这些指标。 此用例可以详细分析 API 响应时间、吞吐量和错误率,从而促进 API 服务的持续改进。 通过密切监控这些指标,团队可以快速响应性能下降,确保最佳的 API 性能并保持高水平的服务可用性。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 协同扩展的时序平台。
查看入门方法