OpenStack 和 MySQL 集成

强大的性能,简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑 OpenStack 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件从必要的 OpenStack 服务收集指标,从而促进云基础设施的监控和管理。

Telegraf SQL 插件允许您将 Telegraf 的指标直接存储到 MySQL 数据库中,从而更轻松地分析和可视化收集的指标。

集成详情

OpenStack

OpenStack 插件允许用户从各种 OpenStack 服务(如 CINDER、GLANCE、HEAT、KEYSTONE、NEUTRON 和 NOVA)收集性能指标。它支持多个 OpenStack API 来获取与这些服务相关的关键指标,从而实现对云资源的全面监控和管理。随着组织越来越多地采用 OpenStack 作为其云基础设施,此插件在提供对整个云环境中的资源使用情况、可用性和性能的洞察方面发挥着至关重要的作用。配置选项允许自定义轮询间隔和过滤不需要的标签,以优化性能和基数。

MySQL

Telegraf 的 SQL 输出插件旨在通过基于传入指标动态创建表和列,将指标数据无缝写入 SQL 数据库。当配置为 MySQL 时,该插件利用 go-sql-driver/mysql,这需要启用 ANSI_QUOTES SQL 模式以确保正确处理带引号的标识符。这种动态模式创建方法确保每个指标都存储在其自己的表中,其结构源自其字段和标签,从而提供系统性能的详细时间戳记录。该插件的灵活性使其能够处理高吞吐量环境,使其非常适合需要强大、精细的指标日志记录和历史数据分析的场景。

配置

OpenStack

[[inputs.openstack]]
  ## The recommended interval to poll is '30m'

  ## The identity endpoint to authenticate against and get the service catalog from.
  authentication_endpoint = "https://my.openstack.cloud:5000"

  ## The domain to authenticate against when using a V3 identity endpoint.
  # domain = "default"

  ## The project to authenticate as.
  # project = "admin"

  ## User authentication credentials. Must have admin rights.
  username = "admin"
  password = "password"

  ## Available services are:
  ## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
  ## "networks", "nova_services", "ports", "projects", "servers",
  ## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
  ## "volumes"
  # enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]

  ## Query all instances of all tenants for the volumes and server services
  ## NOTE: Usually this is only permitted for administrators!
  # query_all_tenants = true

  ## output secrets (such as adminPass(for server) and UserID(for volume)).
  # output_secrets = false

  ## Amount of time allowed to complete the HTTP(s) request.
  # timeout = "5s"

  ## HTTP Proxy support
  # http_proxy_url = ""

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Options for tags received from Openstack
  # tag_prefix = "openstack_tag_"
  # tag_value = "true"

  ## Timestamp format for timestamp data received from Openstack.
  ## If false format is unix nanoseconds.
  # human_readable_timestamps = false

  ## Measure Openstack call duration
  # measure_openstack_requests = false

MySQL

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

输入和输出集成示例

OpenStack

  1. 跨云管理:利用 OpenStack 插件从单个 Telegraf 实例监控和管理多个 OpenStack 云。通过聚合不同云的指标,组织可以深入了解资源利用率,并优化其云架构以实现成本和性能优化。

  2. 基于指标的自动扩展:将从 OpenStack 收集的指标集成到自动扩展解决方案中。例如,如果插件检测到特定服务的性能下降,它可以触发自动扩展规则以启动其他实例,从而确保系统性能在不同工作负载下保持最佳状态。

  3. 性能监控仪表板:使用 OpenStack Telegraf 插件收集的数据为实时监控仪表板提供支持。此设置提供了来自 OpenStack 服务的关键指标的可视化,使利益相关者能够快速识别趋势、查明问题,并做出数据驱动的决策来管理其云基础设施。

  4. 服务可用性报告和分析:通过利用从各种 OpenStack 服务收集的指标,团队可以生成关于服务可用性和随时间变化的性能的详细报告。此信息可以帮助识别重复出现的问题,改进服务交付,并就基础设施或服务配置的更改做出明智的决策。

MySQL

  1. 实时 Web 分析存储:利用该插件捕获网站性能指标并将其存储在 MySQL 中。此设置使团队能够监控用户交互、分析流量模式,并根据实时数据洞察动态调整站点功能。

  2. 物联网设备监控:利用该插件从物联网传感器网络收集指标,并将它们记录到 MySQL 数据库中。此用例支持对设备健康状况和性能的持续监控,从而实现预测性维护和对异常的即时响应。

  3. 金融交易日志记录:记录具有精确时间戳的高频金融交易数据。此方法支持强大的审计跟踪、实时欺诈检测以及全面的历史分析,以用于合规性和报告目的。

  4. 应用程序性能基准测试:将该插件与应用程序性能监控系统集成,以将指标记录到 MySQL 中。这有助于随时间推移进行详细的基准测试和趋势分析,使组织能够有效地识别性能瓶颈并优化资源分配。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成