OpenStack 和 Grafana 集成

强大的性能和简单的集成, 由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 OpenStack 和 InfluxDB。

50亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 使用 InfluxDB,第一名的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

此插件从必要的 OpenStack 服务收集指标,从而促进云基础设施的监控和管理。

此插件使 Telegraf 能够将指标实时直接流式传输到 Grafana 仪表板,利用 Grafana Live 进行即时数据可视化和操作洞察。

集成详情

OpenStack

OpenStack 插件允许用户从各种 OpenStack 服务(如 CINDER、GLANCE、HEAT、KEYSTONE、NEUTRON 和 NOVA)收集性能指标。 它支持多个 OpenStack API 来获取与这些服务相关的关键指标,从而实现对云资源的全面监控和管理。 随着组织越来越多地采用 OpenStack 用于其云基础设施,此插件在提供对整个云环境中资源使用情况、可用性和性能的洞察方面发挥着至关重要的作用。 配置选项允许自定义轮询间隔和过滤不需要的标签,以优化性能和基数。

Grafana

Telegraf 可用于使用 Websocket 输出插件将实时数据发送到 Grafana。 Telegraf 收集的指标会立即推送到 Grafana 仪表板,从而实现实时可视化和分析。 此插件非常适合需要低延迟、实时数据可视化的用例,例如操作监控、实时分析和即时事件响应场景。 它支持身份验证标头、可自定义的数据序列化格式(如 JSON)以及通过 TLS 的安全通信,在动态、交互式仪表板环境中提供灵活性和易于集成性。

配置

OpenStack

[[inputs.openstack]]
  ## The recommended interval to poll is '30m'

  ## The identity endpoint to authenticate against and get the service catalog from.
  authentication_endpoint = "https://my.openstack.cloud:5000"

  ## The domain to authenticate against when using a V3 identity endpoint.
  # domain = "default"

  ## The project to authenticate as.
  # project = "admin"

  ## User authentication credentials. Must have admin rights.
  username = "admin"
  password = "password"

  ## Available services are:
  ## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
  ## "networks", "nova_services", "ports", "projects", "servers",
  ## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
  ## "volumes"
  # enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]

  ## Query all instances of all tenants for the volumes and server services
  ## NOTE: Usually this is only permitted for administrators!
  # query_all_tenants = true

  ## output secrets (such as adminPass(for server) and UserID(for volume)).
  # output_secrets = false

  ## Amount of time allowed to complete the HTTP(s) request.
  # timeout = "5s"

  ## HTTP Proxy support
  # http_proxy_url = ""

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Options for tags received from Openstack
  # tag_prefix = "openstack_tag_"
  # tag_value = "true"

  ## Timestamp format for timestamp data received from Openstack.
  ## If false format is unix nanoseconds.
  # human_readable_timestamps = false

  ## Measure Openstack call duration
  # measure_openstack_requests = false

Grafana

[[outputs.websocket]]
  ## Grafana Live WebSocket endpoint
  url = "ws://localhost:3000/api/live/push/custom_id"

  ## Optional headers for authentication
  # [outputs.websocket.headers]
  #   Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"

  ## Data format to send metrics
  data_format = "influx"

  ## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
  # connect_timeout = "30s"
  # write_timeout = "30s"
  # read_timeout = "30s"

  ## Optionally turn on using text data frames (binary by default).
  # use_text_frames = false

  ## TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

OpenStack

  1. 跨云管理:利用 OpenStack 插件从单个 Telegraf 实例监控和管理多个 OpenStack 云。 通过聚合不同云之间的指标,组织可以深入了解资源利用率,并优化其云架构以实现成本和性能。

  2. 基于指标的自动扩展:将从 OpenStack 收集的指标集成到自动扩展解决方案中。 例如,如果插件检测到特定服务的性能下降,它可以触发自动扩展规则以启动额外的实例,从而确保系统性能在不同的工作负载下保持最佳状态。

  3. 性能监控仪表板:使用 OpenStack Telegraf 插件收集的数据为实时监控仪表板提供支持。 此设置提供来自 OpenStack 服务的关键指标的可视化,使利益相关者能够快速识别趋势、查明问题,并在管理其云基础设施时做出数据驱动的决策。

  4. 服务可用性报告和分析:通过利用从各种 OpenStack 服务收集的指标,团队可以生成关于服务可用性和随时间变化的性能的详细报告。 此信息可以帮助识别重复出现的问题、改进服务交付,并就基础设施或服务配置的更改做出明智的决策。

Grafana

  1. 实时基础设施仪表板:部署 Telegraf 以将服务器健康指标直接流式传输到 Grafana 仪表板,使 IT 团队能够实时可视化基础设施性能。 这种设置允许立即检测和响应关键系统事件。

  2. 交互式物联网监控:集成 Telegraf 收集的物联网设备指标,并将实时数据推送到 Grafana,从而创建动态和交互式仪表板,用于监控智慧城市项目或制造过程。 这种实时可见性显着提高了响应能力和运营效率。

  3. 即时应用程序性能分析:将来自生产环境的应用程序指标实时流式传输到 Grafana 仪表板,使开发团队能够在部署期间快速检测和诊断性能瓶颈或异常,从而最大限度地减少停机时间并提高可靠性。

  4. 现场活动分析:在重大现场活动期间,利用 Telegraf 捕获和流式传输实时观众或系统指标,直接传输到 Grafana 仪表板。 活动组织者可以动态监控并对不断变化的条件或趋势做出反应,从而显着增强观众参与度和运营决策。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 使用 InfluxDB,第一名的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成