OpenStack 和 Cortex 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑OpenStack 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是使用 Telegraf 构建的排名第一的时序平台,可进行扩展。

查看入门方法

输入和输出集成概述

此插件从必要的 OpenStack 服务收集指标,从而促进云基础设施的监控和管理。

此插件使 Telegraf 能够使用 Prometheus remote write 协议将指标发送到 Cortex,从而可以无缝摄取到 Cortex 的可扩展、多租户时序存储中。

集成详情

OpenStack

OpenStack 插件允许用户从各种 OpenStack 服务(如 CINDER、GLANCE、HEAT、KEYSTONE、NEUTRON 和 NOVA)收集性能指标。它支持多个 OpenStack API 来获取与这些服务相关的关键指标,从而实现对云资源的全面监控和管理。随着组织越来越多地采用 OpenStack 作为其云基础设施,此插件在提供对整个云环境中的资源使用情况、可用性和性能的洞察方面发挥着至关重要的作用。配置选项允许自定义轮询间隔和过滤不需要的标签,以优化性能和基数。

Cortex

借助 Telegraf 的 HTTP 输出插件和 prometheusremotewrite 数据格式,您可以将指标直接发送到 Cortex,Cortex 是 Prometheus 的水平可扩展、长期存储后端。Cortex 支持多租户,并使用 Prometheus protobuf 格式接受远程写入请求。通过使用 Telegraf 作为收集代理,并将 Remote Write 作为传输机制,组织可以将可观测性扩展到 Prometheus 本身不支持的来源(例如 Windows 主机、启用 SNMP 的设备或自定义应用程序指标),同时利用 Cortex 的高可用性和长期保留功能。

配置

OpenStack

[[inputs.openstack]]
  ## The recommended interval to poll is '30m'

  ## The identity endpoint to authenticate against and get the service catalog from.
  authentication_endpoint = "https://my.openstack.cloud:5000"

  ## The domain to authenticate against when using a V3 identity endpoint.
  # domain = "default"

  ## The project to authenticate as.
  # project = "admin"

  ## User authentication credentials. Must have admin rights.
  username = "admin"
  password = "password"

  ## Available services are:
  ## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
  ## "networks", "nova_services", "ports", "projects", "servers",
  ## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
  ## "volumes"
  # enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]

  ## Query all instances of all tenants for the volumes and server services
  ## NOTE: Usually this is only permitted for administrators!
  # query_all_tenants = true

  ## output secrets (such as adminPass(for server) and UserID(for volume)).
  # output_secrets = false

  ## Amount of time allowed to complete the HTTP(s) request.
  # timeout = "5s"

  ## HTTP Proxy support
  # http_proxy_url = ""

  ## Optional TLS Config
  # tls_ca = /path/to/cafile
  # tls_cert = /path/to/certfile
  # tls_key = /path/to/keyfile
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Options for tags received from Openstack
  # tag_prefix = "openstack_tag_"
  # tag_value = "true"

  ## Timestamp format for timestamp data received from Openstack.
  ## If false format is unix nanoseconds.
  # human_readable_timestamps = false

  ## Measure Openstack call duration
  # measure_openstack_requests = false

Cortex

[[outputs.http]]
  ## Cortex Remote Write endpoint
  url = "http://cortex.example.com/api/v1/push"

  ## Use POST to send data
  method = "POST"

  ## Send metrics using Prometheus remote write format
  data_format = "prometheusremotewrite"

  ## Optional HTTP headers for authentication
  # [outputs.http.headers]
  #   X-Scope-OrgID = "your-tenant-id"
  #   Authorization = "Bearer YOUR_API_TOKEN"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

  ## Request timeout
  timeout = "10s"

输入和输出集成示例

OpenStack

  1. 跨云管理:利用 OpenStack 插件从单个 Telegraf 实例监控和管理多个 OpenStack 云。通过聚合不同云中的指标,组织可以深入了解资源利用率,并优化其云架构以实现成本和性能优化。

  2. 基于指标的自动扩展:将从 OpenStack 收集的指标集成到自动扩展解决方案中。例如,如果插件检测到特定服务的性能下降,它可以触发自动扩展规则以启动其他实例,确保系统性能在不同的工作负载下保持最佳状态。

  3. 性能监控仪表板:使用 OpenStack Telegraf 插件收集的数据来支持实时监控仪表板。此设置提供了来自 OpenStack 服务的关键指标的可视化,使利益干系人能够快速识别趋势、查明问题,并在管理其云基础设施时做出数据驱动的决策。

  4. 服务可用性报告和分析:通过利用从各种 OpenStack 服务收集的指标,团队可以生成关于服务可用性和随时间推移的性能的详细报告。此信息可以帮助识别重复出现的问题、改进服务交付,并就基础设施或服务配置的更改做出明智的决策。

Cortex

  1. 统一多租户监控:使用 Telegraf 从不同的团队或环境收集指标,并将它们推送到带有单独 X-Scope-OrgID 标头的 Cortex。这实现了每个租户的隔离数据摄取和查询,非常适合托管服务和平台团队。

  2. 将 Prometheus 覆盖范围扩展到边缘设备:在边缘或物联网设备上部署 Telegraf 以收集系统指标,并将它们发送到集中的 Cortex 集群。这种方法确保了即使在没有本地 Prometheus 抓取器的环境中,也能保持一致的可观测性。

  3. 具有联邦租户的全球服务可观测性:通过配置 Telegraf 代理将数据推送到区域 Cortex 集群(每个集群都标记有租户标识符)来聚合来自全球基础设施的指标。Cortex 处理跨区域的重复数据删除和集中访问。

  4. 自定义应用程序遥测管道:通过 Telegraf 的 exechttp 输入插件收集特定于应用程序的遥测数据,并将其转发到 Cortex。这使 DevOps 团队能够以可扩展、查询高效的格式监控特定于应用程序的 KPI,同时保持指标按租户或服务进行逻辑分组。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,这是使用 Telegraf 构建的排名第一的时序平台,可进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成