目录
输入和输出集成概述
此插件从重要的 OpenStack 服务收集指标,从而促进云基础设施的监控和管理。
Azure Data Explorer 插件允许与 Azure Data Explorer 集成指标收集,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。
集成详情
OpenStack
OpenStack 插件允许用户从各种 OpenStack 服务(如 CINDER、GLANCE、HEAT、KEYSTONE、NEUTRON 和 NOVA)收集性能指标。它支持多个 OpenStack API 来获取与这些服务相关的关键指标,从而实现对云资源的全面监控和管理。随着组织越来越多地采用 OpenStack 作为其云基础设施,此插件在提供对整个云环境中的资源使用情况、可用性和性能的洞察方面发挥着至关重要的作用。配置选项允许自定义轮询间隔和过滤不需要的标签,以优化性能和基数。
Azure Data Explorer
Azure Data Explorer 插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时序数据写入 Azure Data Explorer、Azure Synapse 和 Fabric 中的实时分析。这种集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure Data Explorer 针对分析大量不同数据类型进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其需求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限的灵活性。这支持现代应用程序的可扩展且安全的监控设置,这些应用程序利用云服务。
配置
OpenStack
[[inputs.openstack]]
## The recommended interval to poll is '30m'
## The identity endpoint to authenticate against and get the service catalog from.
authentication_endpoint = "https://my.openstack.cloud:5000"
## The domain to authenticate against when using a V3 identity endpoint.
# domain = "default"
## The project to authenticate as.
# project = "admin"
## User authentication credentials. Must have admin rights.
username = "admin"
password = "password"
## Available services are:
## "agents", "aggregates", "cinder_services", "flavors", "hypervisors",
## "networks", "nova_services", "ports", "projects", "servers",
## "serverdiagnostics", "services", "stacks", "storage_pools", "subnets",
## "volumes"
# enabled_services = ["services", "projects", "hypervisors", "flavors", "networks", "volumes"]
## Query all instances of all tenants for the volumes and server services
## NOTE: Usually this is only permitted for administrators!
# query_all_tenants = true
## output secrets (such as adminPass(for server) and UserID(for volume)).
# output_secrets = false
## Amount of time allowed to complete the HTTP(s) request.
# timeout = "5s"
## HTTP Proxy support
# http_proxy_url = ""
## Optional TLS Config
# tls_ca = /path/to/cafile
# tls_cert = /path/to/certfile
# tls_key = /path/to/keyfile
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Options for tags received from Openstack
# tag_prefix = "openstack_tag_"
# tag_value = "true"
## Timestamp format for timestamp data received from Openstack.
## If false format is unix nanoseconds.
# human_readable_timestamps = false
## Measure Openstack call duration
# measure_openstack_requests = false
Azure Data Explorer
[[outputs.azure_data_explorer]]
## The URI property of the Azure Data Explorer resource on Azure
## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
endpoint_url = ""
## The Azure Data Explorer database that the metrics will be ingested into.
## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
## ex: "exampledatabase"
database = ""
## Timeout for Azure Data Explorer operations
# timeout = "20s"
## Type of metrics grouping used when pushing to Azure Data Explorer.
## Default is "TablePerMetric" for one table per different metric.
## For more information, please check the plugin README.
# metrics_grouping_type = "TablePerMetric"
## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
# table_name = ""
## Creates tables and relevant mapping if set to true(default).
## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
# create_tables = true
## Ingestion method to use.
## Available options are
## - managed -- streaming ingestion with fallback to batched ingestion or the "queued" method below
## - queued -- queue up metrics data and process sequentially
# ingestion_type = "queued"
输入和输出集成示例
OpenStack
-
跨云管理:利用 OpenStack 插件从单个 Telegraf 实例监控和管理多个 OpenStack 云。通过聚合不同云的指标,组织可以深入了解资源利用率,并优化其云架构以实现成本和性能。
-
基于指标的自动扩展:将从 OpenStack 收集的指标集成到自动扩展解决方案中。例如,如果插件检测到特定服务的性能下降,它可以触发自动扩展规则以启动额外的实例,确保系统性能在不同的工作负载下保持最佳状态。
-
性能监控仪表板:使用 OpenStack Telegraf 插件收集的数据来支持实时监控仪表板。此设置提供了来自 OpenStack 服务的关键指标的可视化,使利益干系人能够快速识别趋势、查明问题并在管理其云基础设施时做出数据驱动的决策。
-
服务可用性报告和分析:通过利用从各种 OpenStack 服务收集的指标,团队可以生成关于服务可用性和长期性能的详细报告。此信息可以帮助识别重复出现的问题,改进服务交付,并就基础设施或服务配置的更改做出明智的决策。
Azure Data Explorer
-
实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure Data Explorer 中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并优化系统健康状况,而不会延误。
-
集中式日志管理:利用 Azure Data Explorer 来整合来自多个应用程序和服务的日志。通过利用此插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中获得洞察。
-
数据驱动的警报系统:通过根据通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显著减少停机时间并提高关键操作的可靠性。
-
机器学习模型训练:通过利用发送到 Azure Data Explorer 的数据,组织可以执行大规模分析并准备数据以供输入机器学习模型。此插件支持数据结构化,这些数据随后可用于预测分析,从而增强决策能力。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。