OPC UA 和 PostgreSQL 集成

强大的性能和简易的集成,由 Telegraf 驱动,InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 OPC UA 和 InfluxDB 集成

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。使用 InfluxDB,第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

OPC UA 插件提供了一个接口,用于从 OPC UA 服务器设备检索数据,从而促进有效的数据收集和监控。

Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库模式。

集成详情

OPC UA

OPC UA 插件从使用 OPC UA 协议通信的设备检索数据,允许您从 OPC UA 服务器收集和监控数据。

PostgreSQL

PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容的数据库,通过自动更新缺失的列,为模式管理提供强大的支持。该插件旨在促进与监控解决方案的集成,使用户能够高效地存储和管理时序数据。它为连接设置、并发和错误处理提供了可配置的选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展支持无符号整数数据类型。

配置

OPC UA


[[inputs.opcua]]
  ## Metric name
  # name = "opcua"
  #
  ## OPC UA Endpoint URL
  # endpoint = "opc.tcp://localhost:4840"
  #
  ## Maximum time allowed to establish a connect to the endpoint.
  # connect_timeout = "10s"
  #
  ## Maximum time allowed for a request over the established connection.
  # request_timeout = "5s"

  # Maximum time that a session shall remain open without activity.
  # session_timeout = "20m"
  #
  ## Security policy, one of "None", "Basic128Rsa15", "Basic256",
  ## "Basic256Sha256", or "auto"
  # security_policy = "auto"
  #
  ## Security mode, one of "None", "Sign", "SignAndEncrypt", or "auto"
  # security_mode = "auto"
  #
  ## Path to cert.pem. Required when security mode or policy isn't "None".
  ## If cert path is not supplied, self-signed cert and key will be generated.
  # certificate = "/etc/telegraf/cert.pem"
  #
  ## Path to private key.pem. Required when security mode or policy isn't "None".
  ## If key path is not supplied, self-signed cert and key will be generated.
  # private_key = "/etc/telegraf/key.pem"
  #
  ## Authentication Method, one of "Certificate", "UserName", or "Anonymous".  To
  ## authenticate using a specific ID, select 'Certificate' or 'UserName'
  # auth_method = "Anonymous"
  #
  ## Username. Required for auth_method = "UserName"
  # username = ""
  #
  ## Password. Required for auth_method = "UserName"
  # password = ""
  #
  ## Option to select the metric timestamp to use. Valid options are:
  ##     "gather" -- uses the time of receiving the data in telegraf
  ##     "server" -- uses the timestamp provided by the server
  ##     "source" -- uses the timestamp provided by the source
  # timestamp = "gather"
  #
  ## Client trace messages
  ## When set to true, and debug mode enabled in the agent settings, the OPCUA
  ## client's messages are included in telegraf logs. These messages are very
  ## noisey, but essential for debugging issues.
  # client_trace = false
  #
  ## Include additional Fields in each metric
  ## Available options are:
  ##   DataType -- OPC-UA Data Type (string)
  # optional_fields = []
  #
  ## Node ID configuration
  ## name              - field name to use in the output
  ## namespace         - OPC UA namespace of the node (integer value 0 thru 3)
  ## identifier_type   - OPC UA ID type (s=string, i=numeric, g=guid, b=opaque)
  ## identifier        - OPC UA ID (tag as shown in opcua browser)
  ## tags              - extra tags to be added to the output metric (optional); deprecated in 1.25.0; use default_tags
  ## default_tags      - extra tags to be added to the output metric (optional)
  ##
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #   {name="", namespace="", identifier_type="", identifier="", tags=[["tag1", "value1"], ["tag2", "value2"]},
  #   {name="", namespace="", identifier_type="", identifier=""},
  # ]
  #
  ## Bracketed notation
  # [[inputs.opcua.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "value1", tag2 = "value2" }
  #
  # [[inputs.opcua.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #
  ## Node Group
  ## Sets defaults so they aren't required in every node.
  ## Default values can be set for:
  ## * Metric name
  ## * OPC UA namespace
  ## * Identifier
  ## * Default tags
  ##
  ## Multiple node groups are allowed
  #[[inputs.opcua.group]]
  ## Group Metric name. Overrides the top level name.  If unset, the
  ## top level name is used.
  # name =
  #
  ## Group default namespace. If a node in the group doesn't set its
  ## namespace, this is used.
  # namespace =
  #
  ## Group default identifier type. If a node in the group doesn't set its
  ## namespace, this is used.
  # identifier_type =
  #
  ## Default tags that are applied to every node in this group. Can be
  ## overwritten in a node by setting a different value for the tag name.
  ##   example: default_tags = { tag1 = "value1" }
  # default_tags = {}
  #
  ## Node ID Configuration.  Array of nodes with the same settings as above.
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #  {name="node1", namespace="", identifier_type="", identifier=""},
  #  {name="node2", namespace="", identifier_type="", identifier=""},
  #]
  #
  ## Bracketed notation
  # [[inputs.opcua.group.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "override1", tag2 = "value2" }
  #
  # [[inputs.opcua.group.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""

  ## Enable workarounds required by some devices to work correctly
  # [inputs.opcua.workarounds]
    ## Set additional valid status codes, StatusOK (0x0) is always considered valid
  # additional_valid_status_codes = ["0xC0"]

  # [inputs.opcua.request_workarounds]
    ## Use unregistered reads instead of registered reads
  # use_unregistered_reads = false

PostgreSQL

# Publishes metrics to a postgresql database
[[outputs.postgresql]]
  ## Specify connection address via the standard libpq connection string:
  ##   host=... user=... password=... sslmode=... dbname=...
  ## Or a URL:
  ##   postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
  ## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
  ##
  ## All connection parameters are optional. Environment vars are also supported.
  ## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
  ## All supported vars can be found here:
  ##  https://postgresql.ac.cn/docs/current/libpq-envars.html
  ##
  ## Non-standard parameters:
  ##   pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
  ##   pool_min_conns (default: 0) - Minimum size of connection pool.
  ##   pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
  ##   pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
  ##   pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
  # connection = ""

  ## Postgres schema to use.
  # schema = "public"

  ## Store tags as foreign keys in the metrics table. Default is false.
  # tags_as_foreign_keys = false

  ## Suffix to append to table name (measurement name) for the foreign tag table.
  # tag_table_suffix = "_tag"

  ## Deny inserting metrics if the foreign tag can't be inserted.
  # foreign_tag_constraint = false

  ## Store all tags as a JSONB object in a single 'tags' column.
  # tags_as_jsonb = false

  ## Store all fields as a JSONB object in a single 'fields' column.
  # fields_as_jsonb = false

  ## Name of the timestamp column
  ## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
  # timestamp_column_name = "time"

  ## Type of the timestamp column
  ## Currently, "timestamp without time zone" and "timestamp with time zone"
  ## are supported
  # timestamp_column_type = "timestamp without time zone"

  ## Templated statements to execute when creating a new table.
  # create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }})''',
  # ]

  ## Templated statements to execute when adding columns to a table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
  ## containing fields for which there is no column will have the field omitted.
  # add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## Templated statements to execute when creating a new tag table.
  # tag_table_create_templates = [
  #   '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
  # ]

  ## Templated statements to execute when adding columns to a tag table.
  ## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
  # tag_table_add_column_templates = [
  #   '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
  # ]

  ## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
  ## unsigned 64-bit integer type).
  ## The value can be one of:
  ##   numeric - Uses the PostgreSQL "numeric" data type.
  ##   uint8 - Requires pguint extension (https://github.com/petere/pguint)
  # uint64_type = "numeric"

  ## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
  ## controls the maximum backoff duration.
  # retry_max_backoff = "15s"

  ## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
  ## This is an optimization to skip inserting known tag IDs.
  ## Each entry consumes approximately 34 bytes of memory.
  # tag_cache_size = 100000

  ## Enable & set the log level for the Postgres driver.
  # log_level = "warn" # trace, debug, info, warn, error, none

输入和输出集成示例

OPC UA

  1. 基本配置:使用您的 OPC UA 服务器端点和所需的指标设置插件。这允许 Telegraf 开始从配置的节点收集指标。

  2. 节点 ID 设置:使用配置指定特定节点,例如温度传感器,以实时监控它们的值。例如,配置节点 ns=3;s=Temperature 以直接收集温度数据。

  3. 组配置:通过将多个节点分组到单个配置下,简化对它们的监控——这为该组中的所有节点设置默认值,从而减少设置中的冗余。

PostgreSQL

  1. 使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而使用复杂查询实现实时分析。这种设置可以帮助数据科学家和分析师发现模式和趋势,因为他们在利用 PostgreSQL 强大的查询优化功能的同时,跨多个表操作关系数据。具体来说,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常会隐藏在嵌入式系统中的见解。

  2. 与 TimescaleDB 集成以处理时序数据:在 TimescaleDB 实例中使用 PostgreSQL 插件,以高效地处理和分析时序数据。通过实施超表,用户可以在时间维度上实现更高的性能和主题分区。这种集成允许用户对大量的时序数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,确保指标分析的可靠性和效率。

  3. 数据版本控制和历史分析:使用 PostgreSQL 插件实施策略,以维护指标随时间推移的不同版本。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而实现轻松的历史分析。这种方法不仅提供了对数据演变的见解,而且有助于遵守数据保留策略,确保数据集的历史完整性保持不变。

  4. 动态模式管理以应对不断变化的指标:使用插件的模板功能来创建动态变化的模式,以响应指标的变化。此用例允许组织在指标演变时调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷的数据管理实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。使用 InfluxDB,第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成