OPC UA 和 Grafana 集成

通过易于集成的强大性能,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 OPC UA 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,这是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

OPC UA 插件提供了一个接口,用于从 OPC UA 服务器设备检索数据,从而促进有效的数据收集和监控。

此插件使 Telegraf 能够将指标直接实时流式传输到 Grafana 仪表板,从而利用 Grafana Live 进行即时数据可视化和操作洞察。

集成详情

OPC UA

OPC UA 插件从使用 OPC UA 协议通信的设备检索数据,使您可以从 OPC UA 服务器收集和监控数据。

Grafana

Telegraf 可以使用 Websocket 输出插件将实时数据发送到 Grafana。Telegraf 收集的指标会立即推送到 Grafana 仪表板,从而实现实时可视化和分析。此插件非常适合需要低延迟、实时数据可视化的用例,例如运营监控、实时分析和即时事件响应场景。它支持身份验证标头、可自定义的数据序列化格式(如 JSON)以及通过 TLS 进行的安全通信,从而在动态、交互式仪表板环境中提供灵活性和易于集成性。

配置

OPC UA


[[inputs.opcua]]
  ## Metric name
  # name = "opcua"
  #
  ## OPC UA Endpoint URL
  # endpoint = "opc.tcp://localhost:4840"
  #
  ## Maximum time allowed to establish a connect to the endpoint.
  # connect_timeout = "10s"
  #
  ## Maximum time allowed for a request over the established connection.
  # request_timeout = "5s"

  # Maximum time that a session shall remain open without activity.
  # session_timeout = "20m"
  #
  ## Security policy, one of "None", "Basic128Rsa15", "Basic256",
  ## "Basic256Sha256", or "auto"
  # security_policy = "auto"
  #
  ## Security mode, one of "None", "Sign", "SignAndEncrypt", or "auto"
  # security_mode = "auto"
  #
  ## Path to cert.pem. Required when security mode or policy isn't "None".
  ## If cert path is not supplied, self-signed cert and key will be generated.
  # certificate = "/etc/telegraf/cert.pem"
  #
  ## Path to private key.pem. Required when security mode or policy isn't "None".
  ## If key path is not supplied, self-signed cert and key will be generated.
  # private_key = "/etc/telegraf/key.pem"
  #
  ## Authentication Method, one of "Certificate", "UserName", or "Anonymous".  To
  ## authenticate using a specific ID, select 'Certificate' or 'UserName'
  # auth_method = "Anonymous"
  #
  ## Username. Required for auth_method = "UserName"
  # username = ""
  #
  ## Password. Required for auth_method = "UserName"
  # password = ""
  #
  ## Option to select the metric timestamp to use. Valid options are:
  ##     "gather" -- uses the time of receiving the data in telegraf
  ##     "server" -- uses the timestamp provided by the server
  ##     "source" -- uses the timestamp provided by the source
  # timestamp = "gather"
  #
  ## Client trace messages
  ## When set to true, and debug mode enabled in the agent settings, the OPCUA
  ## client's messages are included in telegraf logs. These messages are very
  ## noisey, but essential for debugging issues.
  # client_trace = false
  #
  ## Include additional Fields in each metric
  ## Available options are:
  ##   DataType -- OPC-UA Data Type (string)
  # optional_fields = []
  #
  ## Node ID configuration
  ## name              - field name to use in the output
  ## namespace         - OPC UA namespace of the node (integer value 0 thru 3)
  ## identifier_type   - OPC UA ID type (s=string, i=numeric, g=guid, b=opaque)
  ## identifier        - OPC UA ID (tag as shown in opcua browser)
  ## tags              - extra tags to be added to the output metric (optional); deprecated in 1.25.0; use default_tags
  ## default_tags      - extra tags to be added to the output metric (optional)
  ##
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #   {name="", namespace="", identifier_type="", identifier="", tags=[["tag1", "value1"], ["tag2", "value2"]},
  #   {name="", namespace="", identifier_type="", identifier=""},
  # ]
  #
  ## Bracketed notation
  # [[inputs.opcua.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "value1", tag2 = "value2" }
  #
  # [[inputs.opcua.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #
  ## Node Group
  ## Sets defaults so they aren't required in every node.
  ## Default values can be set for:
  ## * Metric name
  ## * OPC UA namespace
  ## * Identifier
  ## * Default tags
  ##
  ## Multiple node groups are allowed
  #[[inputs.opcua.group]]
  ## Group Metric name. Overrides the top level name.  If unset, the
  ## top level name is used.
  # name =
  #
  ## Group default namespace. If a node in the group doesn't set its
  ## namespace, this is used.
  # namespace =
  #
  ## Group default identifier type. If a node in the group doesn't set its
  ## namespace, this is used.
  # identifier_type =
  #
  ## Default tags that are applied to every node in this group. Can be
  ## overwritten in a node by setting a different value for the tag name.
  ##   example: default_tags = { tag1 = "value1" }
  # default_tags = {}
  #
  ## Node ID Configuration.  Array of nodes with the same settings as above.
  ## Use either the inline notation or the bracketed notation, not both.
  #
  ## Inline notation (default_tags not supported yet)
  # nodes = [
  #  {name="node1", namespace="", identifier_type="", identifier=""},
  #  {name="node2", namespace="", identifier_type="", identifier=""},
  #]
  #
  ## Bracketed notation
  # [[inputs.opcua.group.nodes]]
  #   name = "node1"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""
  #   default_tags = { tag1 = "override1", tag2 = "value2" }
  #
  # [[inputs.opcua.group.nodes]]
  #   name = "node2"
  #   namespace = ""
  #   identifier_type = ""
  #   identifier = ""

  ## Enable workarounds required by some devices to work correctly
  # [inputs.opcua.workarounds]
    ## Set additional valid status codes, StatusOK (0x0) is always considered valid
  # additional_valid_status_codes = ["0xC0"]

  # [inputs.opcua.request_workarounds]
    ## Use unregistered reads instead of registered reads
  # use_unregistered_reads = false

Grafana

[[outputs.websocket]]
  ## Grafana Live WebSocket endpoint
  url = "ws://localhost:3000/api/live/push/custom_id"

  ## Optional headers for authentication
  # [outputs.websocket.headers]
  #   Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"

  ## Data format to send metrics
  data_format = "influx"

  ## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
  # connect_timeout = "30s"
  # write_timeout = "30s"
  # read_timeout = "30s"

  ## Optionally turn on using text data frames (binary by default).
  # use_text_frames = false

  ## TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

OPC UA

  1. 基本配置:使用您的 OPC UA 服务器端点和所需的指标设置插件。这允许 Telegraf 开始从配置的节点收集指标。

  2. 节点 ID 设置:使用配置指定特定的节点,例如温度传感器,以实时监控它们的值。例如,配置节点 ns=3;s=Temperature 以直接收集温度数据。

  3. 组配置:通过将多个节点分组到一个配置下,简化对多个节点的监控——这为该组中的所有节点设置默认值,从而减少设置中的冗余。

Grafana

  1. 实时基础设施仪表板:部署 Telegraf 将服务器运行状况指标直接流式传输到 Grafana 仪表板,使 IT 团队能够实时可视化基础设施性能。此设置允许立即检测关键系统事件并做出响应。

  2. 交互式物联网监控:集成 Telegraf 收集的物联网设备指标,并将实时数据推送到 Grafana 中,从而创建动态和交互式仪表板,用于监控智慧城市项目或制造过程。这种实时可见性显着提高了响应速度和运营效率。

  3. 即时应用程序性能分析:将来自生产环境的应用程序指标实时流式传输到 Grafana 仪表板,使开发团队能够在部署期间快速检测和诊断性能瓶颈或异常,从而最大限度地减少停机时间并提高可靠性。

  4. 实时事件分析:在大型现场活动期间,利用 Telegraf 捕获和流式传输实时受众或系统指标,直接传输到 Grafana 仪表板。活动组织者可以动态监控并对不断变化的条件或趋势做出反应,从而显着提高受众参与度和运营决策能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展性

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,这是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成