NSQ 和 Clickhouse 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 NSQ 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,第一名的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

NSQ Telegraf 插件从 NSQD 消息传递系统读取指标,从而实现实时数据处理和监控。

Telegraf 的 SQL 插件使用简单的表模式和动态列生成将收集的指标发送到 SQL 数据库。 当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。

集成详情

NSQ

NSQ 插件与实时消息传递平台 NSQ 接口,从而可以从 NSQD 读取消息。 此插件被归类为服务插件,这意味着它主动侦听指标和事件,而不是定期轮询它们。 为了强调可靠性,它通过跟踪未传递的消息直到输出确认来防止数据丢失。 该插件允许进行配置,例如指定 NSQLookupd 端点、主题和通道,并且它支持多种数据格式,以实现数据处理的灵活性。

Clickhouse

Telegraf 的 SQL 插件旨在通过基于传入指标动态创建表和列,将指标数据写入 SQL 数据库。 当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。 这种方法确保了在高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。 动态模式创建和精确的类型映射实现了详细的时间序列数据日志记录,这对于监控现代分布式系统至关重要。

配置

NSQ

# Read metrics from NSQD topic(s)
[[inputs.nsq_consumer]]
  ## Server option still works but is deprecated, we just prepend it to the nsqd array.
  # server = "localhost:4150"

  ## An array representing the NSQD TCP HTTP Endpoints
  nsqd = ["localhost:4150"]

  ## An array representing the NSQLookupd HTTP Endpoints
  nsqlookupd = ["localhost:4161"]
  topic = "telegraf"
  channel = "consumer"
  max_in_flight = 100

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

NSQ

  1. 实时分析仪表板:将此插件与可视化工具集成,以创建显示来自 NSQ 中各种主题的实时指标的仪表板。 通过订阅特定主题,用户可以动态监控系统健康状况和应用程序性能,从而可以立即洞察并及时响应任何异常。

  2. 事件驱动的自动化:将 NSQ 与无服务器架构相结合,以根据传入消息触发自动化工作流程。 此用例可能涉及处理机器学习模型的数据或响应应用程序中的用户操作,从而通过快速处理来简化操作并增强用户体验。

  3. 多服务通信中心:使用 NSQ 插件充当分布式架构中不同微服务之间的集中消息传递中心。 通过使服务能够通过 NSQ 进行通信,开发人员可以确保可靠的消息传递,同时保持解耦的服务交互,从而显着提高可扩展性和弹性。

  4. 用于增强监控的指标聚合:实施 NSQ 插件以聚合来自多个来源的指标,然后再将它们发送到分析工具。 此设置使企业能够整合来自各种应用程序和服务的数据,从而创建一个统一的视图,以实现更好的决策和战略规划。

Clickhouse

  1. 用于海量数据的实时分析:使用插件将来自大型系统的流式指标馈送到 ClickHouse。 此设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库:将插件与 ClickHouse 集成以创建强大的时序数据仓库。 此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控:利用该插件在 ClickHouse 中为每种指标类型动态创建表,从而可以更轻松地管理和查询来自大量分布式系统的数据,而无需事先定义模式。

  4. 针对物联网部署的优化存储:部署该插件以将来自物联网传感器的数据摄取到 ClickHouse 中。 其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,第一名的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成