NSQ 和 Azure 数据资源管理器集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 NSQ 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 使用 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

NSQ Telegraf 插件从 NSQD 消息系统中读取指标,从而实现实时数据处理和监控。

Azure 数据资源管理器插件允许将指标收集与 Azure 数据资源管理器集成,使用户能够高效地分析和查询其遥测数据。 通过此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详情

NSQ

NSQ 插件与实时消息平台 NSQ 接口,从而可以从 NSQD 读取消息。 此插件被归类为服务插件,这意味着它主动监听指标和事件,而不是定期轮询它们。 该插件强调可靠性,通过跟踪未传递的消息直到输出确认,从而防止数据丢失。 该插件允许进行配置,例如指定 NSQLookupd 端点、主题和通道,并且它支持多种数据格式,以实现数据处理的灵活性。

Azure 数据资源管理器

Azure 数据资源管理器插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时间序列数据写入 Azure 数据资源管理器、Azure Synapse 和 Fabric 中的实时分析。 此集成充当桥梁,使应用程序和服务能够高效地监控其性能指标或日志。 Azure 数据资源管理器针对对大量不同数据类型的分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。 该插件使用户能够根据其需求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限的灵活性。 这支持使用云服务的现代应用程序的可扩展且安全的监控设置。

配置

NSQ

# Read metrics from NSQD topic(s)
[[inputs.nsq_consumer]]
  ## Server option still works but is deprecated, we just prepend it to the nsqd array.
  # server = "localhost:4150"

  ## An array representing the NSQD TCP HTTP Endpoints
  nsqd = ["localhost:4150"]

  ## An array representing the NSQLookupd HTTP Endpoints
  nsqlookupd = ["localhost:4161"]
  topic = "telegraf"
  channel = "consumer"
  max_in_flight = 100

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Azure 数据资源管理器

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

NSQ

  1. 实时分析仪表板:将此插件与可视化工具集成,以创建一个仪表板,显示来自 NSQ 中各个主题的实时指标。 通过订阅特定主题,用户可以动态监控系统健康状况和应用程序性能,从而可以立即获得见解并及时响应任何异常。

  2. 事件驱动的自动化:将 NSQ 与 serverless 架构结合使用,以根据传入的消息触发自动化工作流程。 此用例可能涉及处理机器学习模型的数据或响应应用程序中的用户操作,从而简化操作并通过快速处理增强用户体验。

  3. 多服务通信中心:在分布式架构中,使用 NSQ 插件充当不同微服务之间的集中消息传递中心。 通过使服务能够通过 NSQ 进行通信,开发人员可以确保可靠的消息传递,同时保持解耦的服务交互,从而显着提高可扩展性和弹性。

  4. 指标聚合以增强监控:实施 NSQ 插件以聚合来自多个来源的指标,然后再将其发送到分析工具。 此设置使企业能够整合来自各种应用程序和服务的数据,从而创建一个统一的视图,以便更好地进行决策和战略规划。

Azure 数据资源管理器

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure 数据资源管理器中,组织可以构建反映实时性能指标的综合仪表板。 这使团队能够主动响应性能问题并立即优化系统健康状况。

  2. 集中式日志管理:利用 Azure 数据资源管理器来整合来自多个应用程序和服务的日志。 通过使用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中获取见解。

  3. 数据驱动的警报系统:通过基于通过此插件发送的指标配置警报来增强监控功能。 组织可以设置阈值并自动执行事件响应,从而显着减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure 数据资源管理器的数据,组织可以执行大规模分析并准备数据以供输入机器学习模型。 此插件能够构建数据结构,这些数据结构随后可用于预测分析,从而提高决策能力。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 使用 InfluxDB,第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成