NATS 和 AWS Timestream 集成

由 InfluxData 构建的开源数据连接器 Telegraf 提供支持,实现强大的性能和简单的集成。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 NATS 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会变得更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

NATS Consumer Input Plugin 实现了从 NATS 消息主题实时数据消费,无缝集成到 Telegraf 数据管道中,用于监控和指标收集。

AWS Timestream Telegraf 插件使用户能够将指标直接发送到 Amazon 的 Timestream 服务,该服务专为时序数据管理而设计。此插件为身份验证、数据组织和保留设置提供了多种配置选项。

集成详情

NATS

NATS Consumer Plugin 允许 Telegraf 从指定的 NATS 主题读取指标,并根据支持的输入数据格式创建指标。利用队列组允许多个 Telegraf 实例并行地从 NATS 集群读取,从而提高吞吐量和可靠性。此插件还支持各种身份验证方法,包括用户名/密码、NATS 凭据文件和 nkey 种子文件,确保与 NATS 服务器的安全通信。由于 JetStream 等功能有助于历史消息的消费,因此在数据持久性和消息可靠性至关重要的环境中,此插件尤其有用。此外,配置各种操作参数的能力使此插件适用于高吞吐量场景,同时保持性能完整性。

AWS Timestream

此插件旨在高效地将指标写入 Amazon 的 Timestream 服务,Timestream 服务是一个针对物联网和运营应用优化的时序数据库。借助此插件,Telegraf 可以发送从各种来源收集的数据,并支持身份验证、数据组织和保留管理方面的灵活配置。它利用凭据链进行身份验证,允许各种方法,如 Web 身份、承担的角色和共享配置文件。用户可以定义指标在 Timestream 中的组织方式——是使用单个表还是多个表,以及控制磁存储和内存存储的保留期等方面。一个关键特性是它能够处理多指标记录,从而实现高效的数据摄取,并有助于减少多次写入的开销。在错误处理方面,该插件包含用于解决数据写入期间与 AWS 错误相关的常见问题的机制,例如用于节流的重试逻辑以及根据需要创建表的能力。

配置

NATS

[[inputs.nats_consumer]]
  ## urls of NATS servers
  servers = ["nats://localhost:4222"]

  ## subject(s) to consume
  ## If you use jetstream you need to set the subjects
  ## in jetstream_subjects
  subjects = ["telegraf"]

  ## jetstream subjects
  ## jetstream is a streaming technology inside of nats.
  ## With jetstream the nats-server persists messages and
  ## a consumer can consume historical messages. This is
  ## useful when telegraf needs to restart it don't miss a
  ## message. You need to configure the nats-server.
  ## https://docs.nats.io/nats-concepts/jetstream.
  jetstream_subjects = ["js_telegraf"]

  ## name a queue group
  queue_group = "telegraf_consumers"

  ## Optional authentication with username and password credentials
  # username = ""
  # password = ""

  ## Optional authentication with NATS credentials file (NATS 2.0)
  # credentials = "/etc/telegraf/nats.creds"

  ## Optional authentication with nkey seed file (NATS 2.0)
  # nkey_seed = "/etc/telegraf/seed.txt"

  ## Use Transport Layer Security
  # secure = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Sets the limits for pending msgs and bytes for each subscription
  ## These shouldn't need to be adjusted except in very high throughput scenarios
  # pending_message_limit = 65536
  # pending_bytes_limit = 67108864

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

AWS Timestream

[[outputs.timestream]]
  ## Amazon Region
  region = "us-east-1"

  ## Amazon Credentials
  ## Credentials are loaded in the following order:
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  #access_key = ""
  #secret_key = ""
  #token = ""
  #role_arn = ""
  #web_identity_token_file = ""
  #role_session_name = ""
  #profile = ""
  #shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Timestream database where the metrics will be inserted.
  ## The database must exist prior to starting Telegraf.
  database_name = "yourDatabaseNameHere"

  ## Specifies if the plugin should describe the Timestream database upon starting
  ## to validate if it has access necessary permissions, connection, etc., as a safety check.
  ## If the describe operation fails, the plugin will not start
  ## and therefore the Telegraf agent will not start.
  describe_database_on_start = false

  ## Specifies how the data is organized in Timestream.
  ## Valid values are: single-table, multi-table.
  ## When mapping_mode is set to single-table, all of the data is stored in a single table.
  ## When mapping_mode is set to multi-table, the data is organized and stored in multiple tables.
  ## The default is multi-table.
  mapping_mode = "multi-table"

  ## Specifies if the plugin should create the table, if the table does not exist.
  create_table_if_not_exists = true

  ## Specifies the Timestream table magnetic store retention period in days.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_magnetic_store_retention_period_in_days = 365

  ## Specifies the Timestream table memory store retention period in hours.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_memory_store_retention_period_in_hours = 24

  ## Specifies how the data is written into Timestream.
  ## Valid values are: true, false
  ## When use_multi_measure_records is set to true, all of the tags and fields are stored
  ## as a single row in a Timestream table.
  ## When use_multi_measure_record is set to false, Timestream stores each field in a
  ## separate table row, thereby storing the tags multiple times (once for each field).
  ## The recommended setting is true.
  ## The default is false.
  use_multi_measure_records = "false"

  ## Specifies the measure_name to use when sending multi-measure records.
  ## NOTE: This property is valid when use_multi_measure_records=true and mapping_mode=multi-table
  measure_name_for_multi_measure_records = "telegraf_measure"

  ## Specifies the name of the table to write data into
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_name = ""

  ## Specifies the name of dimension when all of the data is being stored in a single table
  ## and the measurement name is transformed into the dimension value
  ## (see Mapping data from Influx to Timestream for details)
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_dimension_name_for_telegraf_measurement_name = "namespace"

  ## Only valid and optional if create_table_if_not_exists = true
  ## Specifies the Timestream table tags.
  ## Check Timestream documentation for more details
  # create_table_tags = { "foo" = "bar", "environment" = "dev"}

  ## Specify the maximum number of parallel go routines to ingest/write data
  ## If not specified, defaulted to 1 go routines
  max_write_go_routines = 25

  ## Please see README.md to know how line protocol data is mapped to Timestream
  ##

输入和输出集成示例

NATS

  1. 实时分析仪表板:利用 NATS 插件从各种 NATS 主题实时收集指标,并将它们馈送到集中式分析仪表板。此设置允许立即了解实时应用程序性能,使团队能够迅速对运营问题或性能下降做出反应。

  2. 分布式系统监控:在分布式架构中部署多个配置了 NATS 插件的 Telegraf 实例。这种方法允许团队有效地聚合来自各种微服务的指标,提供系统健康状况和性能的整体视图,同时确保在传输过程中不会丢失任何消息。

  3. 历史消息恢复:利用 NATS JetStream 的功能以及此插件来恢复和处理 Telegraf 重启后的历史消息。此功能对于需要高可靠性的应用程序尤其有利,确保即使在服务中断的情况下也不会丢失任何关键指标。

  4. 动态负载均衡:实施动态负载均衡场景,其中 Telegraf 实例根据负载从 NATS 集群消费消息。调整队列组设置以控制活动消费者的数量,从而在需求波动发生时实现更好的资源利用率和性能扩展。

AWS Timestream

  1. 物联网数据指标:使用 Timestream 插件将来自物联网设备的实时指标发送到 Timestream,从而可以快速分析和可视化传感器数据。通过将设备读数组织成时序格式,用户可以跟踪趋势、识别异常,并根据设备性能简化运营决策。

  2. 应用程序性能监控:将 Timestream 与应用程序监控工具结合使用,以随时间推移发送有关服务性能的指标。这种集成使工程师能够对应用程序性能进行历史分析,将其与业务指标相关联,并根据随时间推移查看的使用模式优化资源分配。

  3. 自动化数据归档:配置 Timestream 插件以将数据写入 Timestream,同时管理保留期。此设置可以自动化归档策略,确保根据预定义的标准保留旧数据。这对于合规性和历史分析尤其有用,使企业能够在最少的人工干预下维护其数据生命周期。

  4. 多应用程序指标聚合:利用 Timestream 插件将来自多个应用程序的指标聚合到 Timestream 中。通过创建性能指标的统一数据库,组织可以获得跨各种服务的整体洞察力,提高系统范围性能的可见性,并促进跨应用程序故障排除。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会变得更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供带有 DynamoDB 的检查点功能。

查看集成