目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
NATS Consumer 输入插件支持从 NATS 消息主题实时数据消费,无缝集成到 Telegraf 数据管道中,用于监控和指标收集。
此输出插件为将 Telegraf 收集的指标直接路由到 TimescaleDB 提供了可靠高效的机制。通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时间序列优化,它支持高性能数据摄取和高级查询功能。
集成详情
NATS
NATS Consumer 插件允许 Telegraf 从指定的 NATS 主题读取指标,并根据支持的输入数据格式创建指标。利用队列组允许多个 Telegraf 实例并行从 NATS 集群读取数据,从而提高吞吐量和可靠性。此插件还支持各种身份验证方法,包括用户名/密码、NATS 凭据文件和 nkey 种子文件,确保与 NATS 服务器的安全通信。由于 JetStream 等功能有助于历史消息的消费,因此在数据持久性和消息可靠性至关重要的环境中,此插件尤其有用。此外,配置各种操作参数的能力使此插件适用于高吞吐量场景,同时保持性能完整性。
TimescaleDB
TimescaleDB 是一个开源时间序列数据库,构建为 PostgreSQL 的扩展,旨在高效处理大规模、面向时间的数据。TimescaleDB 于 2017 年推出,旨在响应对能够管理海量数据、具有高插入速率和复杂查询的强大、可扩展解决方案日益增长的需求。通过利用 PostgreSQL 熟悉的 SQL 接口,并使用专门的时间序列功能对其进行增强,TimescaleDB 迅速在希望将时间序列功能集成到现有关系数据库中的开发人员中流行起来。它的混合方法允许用户受益于 PostgreSQL 的灵活性、可靠性和生态系统,同时为时间序列数据提供优化的性能。
该数据库在需要快速摄取数据点并结合对历史时期进行复杂分析查询的环境中尤其有效。TimescaleDB 具有许多创新功能,例如将数据透明地分区为可管理块的超表和内置的持续聚合。这些功能可以显着提高查询速度和资源效率。
配置
NATS
[[inputs.nats_consumer]]
## urls of NATS servers
servers = ["nats://localhost:4222"]
## subject(s) to consume
## If you use jetstream you need to set the subjects
## in jetstream_subjects
subjects = ["telegraf"]
## jetstream subjects
## jetstream is a streaming technology inside of nats.
## With jetstream the nats-server persists messages and
## a consumer can consume historical messages. This is
## useful when telegraf needs to restart it don't miss a
## message. You need to configure the nats-server.
## https://docs.nats.io/nats-concepts/jetstream.
jetstream_subjects = ["js_telegraf"]
## name a queue group
queue_group = "telegraf_consumers"
## Optional authentication with username and password credentials
# username = ""
# password = ""
## Optional authentication with NATS credentials file (NATS 2.0)
# credentials = "/etc/telegraf/nats.creds"
## Optional authentication with nkey seed file (NATS 2.0)
# nkey_seed = "/etc/telegraf/seed.txt"
## Use Transport Layer Security
# secure = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Sets the limits for pending msgs and bytes for each subscription
## These shouldn't need to be adjusted except in very high throughput scenarios
# pending_message_limit = 65536
# pending_bytes_limit = 67108864
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
TimescaleDB
# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped. Points containing fields for which there is no
## column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values
## (Postgres does not have a native unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns > 1, and a temporary error occurs, the query is
## retried with an incremental backoff. This controls the maximum duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using
## tags_as_foreign_keys). This is an optimization to skip inserting known
## tag IDs. Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Cut column names at the given length to not exceed PostgreSQL's
## 'identifier length' limit (default: no limit)
## (see https://postgresql.ac.cn/docs/current/limits.html)
## Be careful to not create duplicate column names!
# column_name_length_limit = 0
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
NATS
-
实时分析仪表板:利用 NATS 插件实时收集来自各种 NATS 主题的指标,并将它们馈送到集中式分析仪表板中。此设置允许立即了解实时应用程序性能,使团队能够Swift地应对运营问题或性能下降。
-
分布式系统监控:在分布式架构中部署配置了 NATS 插件的多个 Telegraf 实例。这种方法允许团队有效地聚合来自各种微服务的指标,提供系统运行状况和性能的整体视图,同时确保在传输过程中不会丢失任何消息。
-
历史消息恢复:利用 NATS JetStream 的功能以及此插件来恢复和处理 Telegraf 重启后的历史消息。此功能对于需要高可靠性的应用程序尤其有利,即使在服务中断的情况下也能确保不会丢失任何关键指标。
-
动态负载均衡:实施动态负载均衡方案,其中 Telegraf 实例根据负载从 NATS 集群消费消息。调整队列组设置以控制活动消费者的数量,从而可以更好地利用资源并随着需求波动扩展性能。
TimescaleDB
-
实时物联网数据摄取:使用此插件收集和存储来自数千个物联网设备的传感器数据,以实现实时分析,帮助组织监控运营效率并快速响应不断变化的状况。
-
云应用程序性能监控:利用此插件将来自分布式云应用程序的详细性能指标馈送到 TimescaleDB 中。此集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。
-
历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中,以进行全面的历史分析。这种方法允许企业执行趋势分析、生成详细报告,并根据存档的时间序列数据做出数据驱动的决策。
-
自适应警报和异常检测:将此插件与自动化异常检测工作流程集成。通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式,并在发生异常时触发警报,从而增强系统可靠性和主动维护。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在InfluxDB 社区 Slack中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法