NATS 和 SQLite 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是实时大规模查询的推荐配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 NATS 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

NATS Consumer Input Plugin 实现了从 NATS 消息主题实时数据消费,无缝集成到 Telegraf 数据管道中,用于监控和指标收集。

Telegraf 的 SQL 输出插件通过为每种指标类型动态创建表,将指标存储在 SQL 数据库中。当配置为 SQLite 时,它使用基于文件的 DSN 和为轻量级嵌入式数据库使用量身定制的最小 SQL 模式。

集成详情

NATS

NATS Consumer Plugin 允许 Telegraf 从指定的 NATS 主题读取指标,并根据支持的输入数据格式创建指标。使用队列组允许多个 Telegraf 实例并行地从 NATS 集群读取数据,从而提高吞吐量和可靠性。此插件还支持各种身份验证方法,包括用户名/密码、NATS 凭据文件和 nkey 种子文件,确保与 NATS 服务器的安全通信。由于 JetStream 等功能有助于消费历史消息,因此它在数据持久性和消息可靠性至关重要的环境中特别有用。此外,配置各种操作参数的能力使此插件适用于高吞吐量场景,同时保持性能完整性。

SQLite

SQL 输出插件使用动态模式将 Telegraf 指标写入 SQL 数据库,其中每种指标类型都对应一个表。对于 SQLite,该插件使用 modernc.org/sqlite 驱动程序,并且需要文件 URI 格式的 DSN(例如,“file:/path/to/telegraf.db?cache=shared”)。此配置利用标准 ANSI SQL 进行表创建和数据插入,确保与 SQLite 的功能兼容。

配置

NATS

[[inputs.nats_consumer]]
  ## urls of NATS servers
  servers = ["nats://localhost:4222"]

  ## subject(s) to consume
  ## If you use jetstream you need to set the subjects
  ## in jetstream_subjects
  subjects = ["telegraf"]

  ## jetstream subjects
  ## jetstream is a streaming technology inside of nats.
  ## With jetstream the nats-server persists messages and
  ## a consumer can consume historical messages. This is
  ## useful when telegraf needs to restart it don't miss a
  ## message. You need to configure the nats-server.
  ## https://docs.nats.io/nats-concepts/jetstream.
  jetstream_subjects = ["js_telegraf"]

  ## name a queue group
  queue_group = "telegraf_consumers"

  ## Optional authentication with username and password credentials
  # username = ""
  # password = ""

  ## Optional authentication with NATS credentials file (NATS 2.0)
  # credentials = "/etc/telegraf/nats.creds"

  ## Optional authentication with nkey seed file (NATS 2.0)
  # nkey_seed = "/etc/telegraf/seed.txt"

  ## Use Transport Layer Security
  # secure = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Sets the limits for pending msgs and bytes for each subscription
  ## These shouldn't need to be adjusted except in very high throughput scenarios
  # pending_message_limit = 65536
  # pending_bytes_limit = 67108864

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

SQLite

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "sqlite"

  ## Data source name
  ## For SQLite, the DSN is a filename or URL with the scheme "file:".
  ## Example: "file:/path/to/telegraf.db?cache=shared"
  data_source_name = "file:/path/to/telegraf.db?cache=shared"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

NATS

  1. 实时分析仪表板:利用 NATS 插件实时收集来自各种 NATS 主题的指标,并将它们馈送到集中的分析仪表板。此设置允许立即查看实时应用程序性能,使团队能够快速响应操作问题或性能下降。

  2. 分布式系统监控:在分布式架构中部署配置了 NATS 插件的多个 Telegraf 实例。这种方法允许团队有效地聚合来自各种微服务的指标,提供系统健康状况和性能的整体视图,同时确保在传输过程中不会丢失任何消息。

  3. 历史消息恢复:结合 NATS JetStream 的功能和此插件,在 Telegraf 重新启动后恢复和处理历史消息。此功能对于需要高可靠性的应用程序特别有益,确保即使在服务中断的情况下也不会丢失任何关键指标。

  4. 动态负载均衡:实施动态负载均衡场景,其中 Telegraf 实例根据负载从 NATS 集群消费消息。调整队列组设置以控制活动消费者的数量,从而在需求波动发生时实现更好的资源利用和性能扩展。

SQLite

  1. 本地监控存储:配置插件将指标写入本地 SQLite 数据库文件。这非常适合不需要设置全规模数据库服务器的轻量级部署。
  2. 嵌入式应用程序:使用 SQLite 作为嵌入式在边缘设备中的应用程序的后端,受益于其基于文件的架构和最低的资源需求。
  3. 快速设置进行测试:利用 SQLite 的易用性,快速设置 Telegraf 指标收集的测试环境,而无需外部数据库服务。
  4. 自定义模式管理:如果您需要特定的列类型或索引,请调整表创建模板以预定义您的模式,确保与您的应用程序需求兼容。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成